Illumination invariant single face image recognition under heterogeneous lighting condition
Tài liệu tham khảo
P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, W. Worek, Overview of the face recognition grand challenge, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 947–954.
Phillips, 2010, Frvt 2006 and ice 2006 large-scale experimental results, IEEE Trans. Pattern Anal. Mach. Intell., 32, 831, 10.1109/TPAMI.2009.59
Y. Sun, X. Wang, X. Tang, Deep learning face representation from predicting 10,000 classes, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 1891–1898.
Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: closing the gap to human-level performance in face verification, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701–1708.
A.K. Jain, B. Chandrasekaran, Dimensionality and sample size considerations in pattern recognition practice, in: Handbook of Statistics, vol. 2, 1982, pp. 835–855.
Turk, 1991, Eigenfaces for recognition, J. Cogn. Neurosci., 3, 71, 10.1162/jocn.1991.3.1.71
Belhumeur, 1997, Eigenfaces vs. Fisherfaces, IEEE Trans. Pattern Anal. Mach. Intell., 19, 711, 10.1109/34.598228
Tan, 2006, Face recognition from a single image per person, Pattern Recognit., 39, 1725, 10.1016/j.patcog.2006.03.013
Yang, 2004, Two-dimensional pca, IEEE Trans. Pattern Anal. Mach. Intell., 26, 131, 10.1109/TPAMI.2004.1261097
D. Beymer, T. Poggio, Face recognition from one example view, in: Proceedings of the 5th IEEE International Conference on Computer Vision, 1995, pp. 500–507.
Martínez, 2002, Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class, Pattern Anal. Mach. Intell., 24, 748, 10.1109/TPAMI.2002.1008382
Brunelli, 1993, Face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 15, 1042, 10.1109/34.254061
Wiskott, 1997, Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Anal. Mach. Intell., 19, 775, 10.1109/34.598235
Ahonen, 2006, Face description with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 28, 2037, 10.1109/TPAMI.2006.244
Chen, 2004, Making flda applicable to face recognition with one sample per person, Pattern Recognit., 37, 1553, 10.1016/j.patcog.2003.12.010
Xie, 2010, Extraction of illumination invariant facial features from a single image using nonsubsampled contourlet transform, Pattern Recognit., 43, 4177, 10.1016/j.patcog.2010.06.019
Pizer, 1987, Adaptive histogram equalization and its variations, Comput. Vis. Graph. Image Process., 39, 355, 10.1016/S0734-189X(87)80186-X
S. Shan, W. Gao, B. Cao, D. Zhao, Illumination normalization for robust face recognition against varying lighting conditions, in: Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures, 2003, pp. 157–164.
Georghiades, 2001, From few to many, IEEE Trans. Pattern Anal. Mach. Intell., 23, 643, 10.1109/34.927464
Shim, 2008, A subspace model-based approach to face relighting under unknown lighting and poses, IEEE Trans. Image Process, 17, 1331, 10.1109/TIP.2008.925390
H. Wang, S. Li, Y. Wang, Generalized quotient image, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, pp. 498–505.
Chen, 2006, Total variation models for variable lighting face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28, 1519, 10.1109/TPAMI.2006.195
X. Tan, B. Triggs, Enhanced local texture feature sets for face recognition under difficult lighting conditions, in: Proceedings of the 3rd IEEE International Conference on Analysis and Modeling of Faces and Gestures, 2007, pp. 168–182.
Zhang, 2009, Face recognition under varying illumination using gradientfaces, IEEE Trans. Image Process., 18, 2599, 10.1109/TIP.2009.2028255
Wang, 2011, Illumination normalization based on Weber's law with application to face recognition, IEEE Signal Process. Lett., 462, 10.1109/LSP.2011.2158998
M. Sonka, V. Hlavac, R. Boyle, Image Processing: Analysis and Machine Vision, Chapman & Hall, London, 1993.
Basri, 2003, Lambertian reflectance and linear subspaces, IEEE Trans. Pattern Anal. Mach. Intell., 25, 218, 10.1109/TPAMI.2003.1177153
Blanz, 2003, Face recognition based on fitting a 3d morphable model, IEEE Trans. Pattern Anal. Mach. Intell., 25, 1063, 10.1109/TPAMI.2003.1227983
Zhao, 2001, Symmetric shape-from-shading using self-ratio image, Int. J. Comput. Vis., 45, 55, 10.1023/A:1012369907247
W. Zhang, S. Shan, W. Gao, X. Chen, H. Zhang, Local Gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition, in: Proceedings of the 10th IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 786–791.
Zhang, 2007, Histogram of Gabor phase patterns (hgpp), IEEE Trans. Image Process., 16, 57, 10.1109/TIP.2006.884956
Lei, 2011, Face recognition by exploring information jointly in space, scale and orientation, IEEE Trans. Image Process., 20, 247, 10.1109/TIP.2010.2060207
S. Liao, D. Yi, Z. Lei, R. Qin, S.Z. Li, Heterogeneous face recognition from local structures of normalized appearance, in: Proceedings of the IAPR/IEEE International Conference on Biometrics, 2009, pp. 209–218.
B. Klare, A. Jain, Heterogeneous face recognition: matching nir to visible light images, in: Proceedings of the IEEE International Conference on Pattern Recognition, 2010, pp. 1513–1516.
Jobson, 1997, A multiscale retinex for bridging the gap between color images and the human observation of scenes, IEEE Trans. Image Process., 6, 965, 10.1109/83.597272
R. Gross, V. Brajovic, An image preprocessing algorithm for illumination invariant face recognition, in: Proceedings of the 4th IEEE International Conference on Audio- and Video-Based Biometrie Person Authentication, 2003, pp. 10–18.
Z. Hou, W. Yau, Relative gradients for image lighting correction, in: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 1374–1377.
Jain, 1989
Z. Cao, Q. Yin, X. Tang, J. Sun, Face recognition with learning-based descriptor, in: Proceedings IEEE International Conference on Computer Vision and Pattern Recognition, 2010, pp. 2707–2714.
Lei, 2014, Learning discriminant face descriptor, IEEE Trans. Pattern Anal. Mach. Intell., 36, 289, 10.1109/TPAMI.2013.112
O.M. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition, in: British Machine Vision Conference, 2015.
L. Wolf, T. Hassner, Y. Taigman, The one-shot similarity kernel, in: IEEE International Conference on Computer Vision, 2009, pp. 897–902.
Lu, 2015, Learning compact binary face descriptor for face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 37, 2056, 10.1109/TPAMI.2015.2408359
Mikolajczyk, 2004, Scale & affine invariant interest point detectors, Int. J. Comput. Vis., 60, 63, 10.1023/B:VISI.0000027790.02288.f2
S. Liu, D. Yi, Z. Lei, S. Li, Heterogeneous face image matching using multi-scale features, in: International Conference on Biometrics, 2012, pp. 79–84.
Zhu, 2014, Matching nir face to vis face using transduction, IEEE Trans. Inf. Forensics Secur., 9, 501, 10.1109/TIFS.2014.2299977
Klare, 2013, Heterogeneous face recognition using kernel prototype similarities, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1410, 10.1109/TPAMI.2012.229
Bischof, 2004, Illumination insensitive recognition using eigenspaces, Comput. Vis. Image Underst., 95, 86, 10.1016/j.cviu.2004.01.002
Zhang, 2006, Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics, IEEE Trans. Pattern Anal. Mach. Intell., 28, 351, 10.1109/TPAMI.2006.53
Lu, 2012, Discriminative multimanifold analysis for face recognition from a single training sample per person, IEEE Trans. Biom. Compend., 35, 39
J.Y. Zhu, W.S. Zheng, J.H. Lai, Logarithm gradient histogram: a general illumination invariant descriptor for face recognition, in: IEEE International Conference on Automatic Face and Gesture Recognition, 2013, pp. 1–8.
Lindeberg, 1998, Edge detection and ridge detection with automatic scale selection, Int. J. Comput. Vis., 30, 117, 10.1023/A:1008097225773
Young, 1987, The Gaussian derivative model for spatial vision, Spat. Vis., 2, 273, 10.1163/156856887X00222
I. Meglinski, S. Matcher, Quantitative Assessment of Skin Layers Absorption and Skin Reflectance Spectra Simulation in the Visible and Near-infrared Spectral Regions, vol. 23, Iop Publishing, 2002.
T. Sim, S. Baker, M. Bsat, The cmu pose, illumination, and expression (pie) database, in: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, 2002, pp. 46 – 51.
S. Li, Z. Lei, M. Ao, The hfb face database for heterogeneous face biometrics research, in: Proceedings IEEE Computer Society Workshop on Computer Vision and Pattern Recognition, 2009, pp. 1–8.
Xie, 2011, Normalization of face illumination based on large-and small-scale features, IEEE Trans. Image Process., 20, 1807, 10.1109/TIP.2010.2097270
Gross, 2010, Multi-pie, Image Vis. Comput., 28, 807, 10.1016/j.imavis.2009.08.002
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 886–893.