Ignition studies of two low-octane gasolines

Combustion and Flame - Tập 185 - Trang 152-159 - 2017
Tamour Javed1, Ahfaz Ahmed1, Leonardo Lovisotto1,2, Gani Issayev1, Jihad Badra3, S. Mani Sarathy1, Aamir Farooq1
1Clean Combustion Research Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
2Universita degli Studi di Padova, Padova, Italy
3Saudi Aramco Research and Development Center, Fuel Technology R&D Division, Dhahran 31311, Saudi Arabia

Tài liệu tham khảo

Hao, 2016, Compression ignition of low-octane gasoline: life cycle energy consumption and greenhouse gas emissions, Appl. Energy, 181, 391, 10.1016/j.apenergy.2016.08.100 O. Edenhofer, R. Pichs-Madruga, Y. Sokona, et al. Intergovernmental Panel on Climate Change Climate change 2014: mitigation of climate change in transport sector (chapter 8), Cambridge University Press, 2015. K. Epping, S. Aceves, R. Bechtold, J.E. Dec, The potential of HCCI combustion for high efficiency and low emissions, SAE Technical Paper 2002-01-1923, SAE, 2002. Kalghatgi, 2014, The outlook for fuels for internal combustion engines, Int. J. Engine Res., 15, 383, 10.1177/1468087414526189 J. Chang, G. Kalghatgi, A. Amer, Y. Viollet, Enabling high efficiency direct injection engine with naphtha fuel through partially premixed charge compression ignition combustion, SAE Technical Paper 2012-01-0677, SAE, 2012. J. Chang, Y. Viollet, A. Amer, G. Kalghatgi, Fuel economy potential of partially premixed compression ignition (PPCI) combustion with naphtha fuel, SAE Technical Paper 2013-01-2701, SAE, 2013. B. Wang, S.-J. Shuai, H.-Q. Yang, Z. Wang, J.-X. Wang, H. Xu, Experimental study of multiple premixed compression ignition engine fueled with heavy naphtha for high efficiency and low emissions, SAE Technical Paper 2014-01-2678, SAE, 2014. Kalghatgi, 2016, The outlook for transport fuels: Part 1, Petrol Technol. Q., 1, 23 Dempsey, 2014, Comparison of low temperature combustion strategies for advanced compression ignition engines with a focus on controllability, Combust. Sci. Technol., 186, 210, 10.1080/00102202.2013.858137 Javed, 2017, Ignition delay measurements of light naphtha: a fully blended low octane fuel, Proc. Combust. Inst., 36, 315, 10.1016/j.proci.2016.05.043 Javed, 2016, Ignition studies of n-heptane/iso-octane/toluene blends, Combust. Flame, 171, 223, 10.1016/j.combustflame.2016.06.008 AlAbbad, 2017, Ignition delay time measurements of primary reference fuel blends, Combust. Flame, 178, 205, 10.1016/j.combustflame.2016.12.027 Ahmed, 2015, Surrogate fuel formulation for light naphtha combustion in advanced combustion engines Sarathy, 2015, Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures, Proc. Combust. Inst., 35, 249, 10.1016/j.proci.2014.05.122 Sarathy, 2016, Compositional effects on the ignition of FACE gasolines, Combust. Flame, 169, 171, 10.1016/j.combustflame.2016.04.010 Chen, 2017, Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels, Proc. Combust. Inst., 36, 517, 10.1016/j.proci.2016.05.040 Selim, 2017, Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest, Proc. Combust. Inst., 36, 1203, 10.1016/j.proci.2016.06.127 Chen, 2017, Quantities of interest in jet stirred reactor oxidation of a high-octane gasoline, Energy Fuels, 31, 5543, 10.1021/acs.energyfuels.6b03193 Ahmed, 2015, A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties, Fuel, 143, 290, 10.1016/j.fuel.2014.11.022 Smith, 2006, Advanced distillation curve measurement with a model predictive temperature controller, Int. J. Thermophys., 27, 1419, 10.1007/s10765-006-0113-7 Japanwala, 2002, Quality of distillates from repeated recycle of residue, Energy Fuels, 16, 477, 10.1021/ef010234j Singh, 2017, Chemical kinetic insights into the octane number and octane sensitivity of gasoline surrogate mixtures, Energy Fuels, 31, 1945, 10.1021/acs.energyfuels.6b02659 Ghosh, 2006, Development of a detailed gasoline composition-based octane model, Ind. Eng. Chem. Res., 45, 337, 10.1021/ie050811h 2010 Nasir, 2016, Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode, Proc. Combust. Inst., 36, 4453, 10.1016/j.proci.2016.07.010 Chaos, 2010, Chemical‐kinetic modeling of ignition delay: considerations in interpreting shock tube data, Int. J. Chem. Kinet., 42, 143, 10.1002/kin.20471 Wurmel, 2007, Studying the chemistry of HCCI in rapid compression machines, Int. J. Veh. Des., 44, 84, 10.1504/IJVD.2007.013220 Mittal, 2007, A rapid compression machine for chemical kinetics studies at elevated pressures and temperatures, Combust. Sci. Technol., 179, 497, 10.1080/00102200600671898 Mehl, 2011, An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for CFD engine modeling, Energy Fuels, 25, 5215, 10.1021/ef201099y Mehl, 2006, Detailed chemistry promotes understanding of octane numbers and gasoline sensitivity, Energy Fuels, 20, 2391, 10.1021/ef060339s Atef, 2017, A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics, Combust. Flame, 178, 111, 10.1016/j.combustflame.2016.12.029 Zhang, 2016, An updated experimental and kinetic modeling study of n-heptane oxidation, Combust. Flame, 172, 116, 10.1016/j.combustflame.2016.06.028 Al Rashidi, 2017, Cyclopentane combustion. Part I. Mechanism development and computational kinetics, Combust. Flame, 183, 358, 10.1016/j.combustflame.2017.05.018 Al Rashidi, 2017, Cyclopentane combustion. Part II. Experimental ignition delay measurements and mechanism validation, Combust. Flame, 183, 372, 10.1016/j.combustflame.2017.05.017 Mohamed, 2016, Modeling ignition of a heptane isomer: improved thermodynamics, reaction pathways, kinetics, and rate rule optimizations for 2-methylhexane, J. Phys. Chem. A, 120, 2201, 10.1021/acs.jpca.6b00907 Davidson, 2017, Ignition delay time correlations for distillate fuels, Fuel, 187, 26, 10.1016/j.fuel.2016.09.047