Ignition studies of two low-octane gasolines
Tài liệu tham khảo
Hao, 2016, Compression ignition of low-octane gasoline: life cycle energy consumption and greenhouse gas emissions, Appl. Energy, 181, 391, 10.1016/j.apenergy.2016.08.100
O. Edenhofer, R. Pichs-Madruga, Y. Sokona, et al. Intergovernmental Panel on Climate Change Climate change 2014: mitigation of climate change in transport sector (chapter 8), Cambridge University Press, 2015.
K. Epping, S. Aceves, R. Bechtold, J.E. Dec, The potential of HCCI combustion for high efficiency and low emissions, SAE Technical Paper 2002-01-1923, SAE, 2002.
Kalghatgi, 2014, The outlook for fuels for internal combustion engines, Int. J. Engine Res., 15, 383, 10.1177/1468087414526189
J. Chang, G. Kalghatgi, A. Amer, Y. Viollet, Enabling high efficiency direct injection engine with naphtha fuel through partially premixed charge compression ignition combustion, SAE Technical Paper 2012-01-0677, SAE, 2012.
J. Chang, Y. Viollet, A. Amer, G. Kalghatgi, Fuel economy potential of partially premixed compression ignition (PPCI) combustion with naphtha fuel, SAE Technical Paper 2013-01-2701, SAE, 2013.
B. Wang, S.-J. Shuai, H.-Q. Yang, Z. Wang, J.-X. Wang, H. Xu, Experimental study of multiple premixed compression ignition engine fueled with heavy naphtha for high efficiency and low emissions, SAE Technical Paper 2014-01-2678, SAE, 2014.
Kalghatgi, 2016, The outlook for transport fuels: Part 1, Petrol Technol. Q., 1, 23
Dempsey, 2014, Comparison of low temperature combustion strategies for advanced compression ignition engines with a focus on controllability, Combust. Sci. Technol., 186, 210, 10.1080/00102202.2013.858137
Javed, 2017, Ignition delay measurements of light naphtha: a fully blended low octane fuel, Proc. Combust. Inst., 36, 315, 10.1016/j.proci.2016.05.043
Javed, 2016, Ignition studies of n-heptane/iso-octane/toluene blends, Combust. Flame, 171, 223, 10.1016/j.combustflame.2016.06.008
AlAbbad, 2017, Ignition delay time measurements of primary reference fuel blends, Combust. Flame, 178, 205, 10.1016/j.combustflame.2016.12.027
Ahmed, 2015, Surrogate fuel formulation for light naphtha combustion in advanced combustion engines
Sarathy, 2015, Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures, Proc. Combust. Inst., 35, 249, 10.1016/j.proci.2014.05.122
Sarathy, 2016, Compositional effects on the ignition of FACE gasolines, Combust. Flame, 169, 171, 10.1016/j.combustflame.2016.04.010
Chen, 2017, Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels, Proc. Combust. Inst., 36, 517, 10.1016/j.proci.2016.05.040
Selim, 2017, Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest, Proc. Combust. Inst., 36, 1203, 10.1016/j.proci.2016.06.127
Chen, 2017, Quantities of interest in jet stirred reactor oxidation of a high-octane gasoline, Energy Fuels, 31, 5543, 10.1021/acs.energyfuels.6b03193
Ahmed, 2015, A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties, Fuel, 143, 290, 10.1016/j.fuel.2014.11.022
Smith, 2006, Advanced distillation curve measurement with a model predictive temperature controller, Int. J. Thermophys., 27, 1419, 10.1007/s10765-006-0113-7
Japanwala, 2002, Quality of distillates from repeated recycle of residue, Energy Fuels, 16, 477, 10.1021/ef010234j
Singh, 2017, Chemical kinetic insights into the octane number and octane sensitivity of gasoline surrogate mixtures, Energy Fuels, 31, 1945, 10.1021/acs.energyfuels.6b02659
Ghosh, 2006, Development of a detailed gasoline composition-based octane model, Ind. Eng. Chem. Res., 45, 337, 10.1021/ie050811h
2010
Nasir, 2016, Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode, Proc. Combust. Inst., 36, 4453, 10.1016/j.proci.2016.07.010
Chaos, 2010, Chemical‐kinetic modeling of ignition delay: considerations in interpreting shock tube data, Int. J. Chem. Kinet., 42, 143, 10.1002/kin.20471
Wurmel, 2007, Studying the chemistry of HCCI in rapid compression machines, Int. J. Veh. Des., 44, 84, 10.1504/IJVD.2007.013220
Mittal, 2007, A rapid compression machine for chemical kinetics studies at elevated pressures and temperatures, Combust. Sci. Technol., 179, 497, 10.1080/00102200600671898
Mehl, 2011, An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for CFD engine modeling, Energy Fuels, 25, 5215, 10.1021/ef201099y
Mehl, 2006, Detailed chemistry promotes understanding of octane numbers and gasoline sensitivity, Energy Fuels, 20, 2391, 10.1021/ef060339s
Atef, 2017, A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics, Combust. Flame, 178, 111, 10.1016/j.combustflame.2016.12.029
Zhang, 2016, An updated experimental and kinetic modeling study of n-heptane oxidation, Combust. Flame, 172, 116, 10.1016/j.combustflame.2016.06.028
Al Rashidi, 2017, Cyclopentane combustion. Part I. Mechanism development and computational kinetics, Combust. Flame, 183, 358, 10.1016/j.combustflame.2017.05.018
Al Rashidi, 2017, Cyclopentane combustion. Part II. Experimental ignition delay measurements and mechanism validation, Combust. Flame, 183, 372, 10.1016/j.combustflame.2017.05.017
Mohamed, 2016, Modeling ignition of a heptane isomer: improved thermodynamics, reaction pathways, kinetics, and rate rule optimizations for 2-methylhexane, J. Phys. Chem. A, 120, 2201, 10.1021/acs.jpca.6b00907
Davidson, 2017, Ignition delay time correlations for distillate fuels, Fuel, 187, 26, 10.1016/j.fuel.2016.09.047