Identifying the culprits in neurological autoimmune diseases
Tài liệu tham khảo
Anaya, 2012, Common mechanisms of autoimmune diseases (the autoimmune tautology), Autoimmun. Rev., 11, 781, 10.1016/j.autrev.2012.02.002
2019, GBD 2016 Neurology Collaborators, Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet. Neurol, 18, 459, 10.1016/S1474-4422(18)30499-X
Singh, 2013, The portal for rare diseases and orphan drugs, J. Pharmacol. Pharmacother., 4, 168, 10.1177/0976500X20130205
Pierrot-Deseilligny, 2017, Vitamin D and multiple sclerosis: an update, Mult. Scler. Relat. Disord., 14, 35, 10.1016/j.msard.2017.03.014
Piquet, 2018, Infection, immunodeficiency, and inflammatory diseases in autoimmune neurology, Semin. Neurol., 38, 379, 10.1055/s-0038-1660820
Rubin, 2018, Autoimmune neurologic disorders, Am. J. Med., 131, 226, 10.1016/j.amjmed.2017.10.033
Ramagopalan, 2010, Multiple sclerosis: risk factors, prodromes, and potential causal pathways, Lancet Neurol., 9, 727, 10.1016/S1474-4422(10)70094-6
Fletcher, 2010, T cells in multiple sclerosis and experimental autoimmune encephalomyelitis, Clin. Exp. Immunol., 162, 1, 10.1111/j.1365-2249.2010.04143.x
Johnson, 2007, The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology?, Int. Rev. Neurobiol., 79, 73, 10.1016/S0074-7742(07)79004-9
Thompson, 2018, Multiple sclerosis, Lancet, 391, 1622, 10.1016/S0140-6736(18)30481-1
Hughes, 2005, Guillain-Barre syndrome, Lancet, 366, 1653, 10.1016/S0140-6736(05)67665-9
van den Berg, 2014, Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis, Nat. Rev. Neurol., 10, 469, 10.1038/nrneurol.2014.121
Avidan, 2014, Genetic basis of myasthenia gravis - a comprehensive review, J. Autoimmun., 52, 146, 10.1016/j.jaut.2013.12.001
Jayam Trouth, 2012, Myasthenia gravis: a review, Autoimmune Dis., 2012, 874680
Lucchinetti, 2002, A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica, Brain, 125, 1450, 10.1093/brain/awf151
Bennett, 2017, Neuromyelitis optica: deciphering a complex immune-mediated astrocytopathy, J. Neuro Ophthalmol., 37, 291, 10.1097/WNO.0000000000000508
Gutierrez-Arcelus, 2016, Autoimmune diseases - connecting risk alleles with molecular traits of the immune system, Nat. Rev. Genet., 17, 160, 10.1038/nrg.2015.33
Patsopoulos, 2016, 200 Loci complete the genetic puzzle of multiple sclerosis
Fugger, 2009, From genes to function: the next challenge to understanding multiple sclerosis, Nat. Rev. Immunol., 9, 408, 10.1038/nri2554
Parnell, 2017, The multiple sclerosis (MS) genetic risk factors indicate both acquired and innate immune cell subsets contribute to MS pathogenesis and identify novel therapeutic opportunities, Front. Immunol., 8, 425, 10.3389/fimmu.2017.00425
Tschochner, 2016, Identifying patient-specific epstein-barr nuclear antigen-1 genetic variation and potential autoreactive targets relevant to multiple sclerosis pathogenesis, PLoS One, 11, 10.1371/journal.pone.0147567
Moutsianas, 2015, Class II HLA interactions modulate genetic risk for multiple sclerosis, Nat. Genet., 47, 1107, 10.1038/ng.3395
Hartmann, 2014, Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human TH cells, Nat. Commun., 5, 5056, 10.1038/ncomms6056
Liu, 2017, Variants in the IL7RA gene confer susceptibility to multiple sclerosis in Caucasians: evidence based on 9734 cases and 10436 controls, Sci. Rep., 7, 1207, 10.1038/s41598-017-01345-8
Gross, 2016, Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation, Proc. Natl. Acad. Sci. U. S. A, 113, E2973, 10.1073/pnas.1524924113
Chen, 2018, Variant of EOMES associated with increasing risk in Chinese patients with relapsing-remitting multiple sclerosis, Chin. Med. J., 131, 643, 10.4103/0366-6999.226892
Housley, 2015, Genetic variants associated with autoimmunity drive NFkappaB signaling and responses to inflammatory stimuli, Sci. Transl. Med., 7, 291ra93, 10.1126/scitranslmed.aaa9223
Willison, 2016, Guillain-Barre syndrome, Lancet, 388, 717, 10.1016/S0140-6736(16)00339-1
Sinha, 2010, Immunoglobulin IgG Fc-receptor polymorphisms and HLA class II molecules in Guillain-Barre syndrome, Acta Neurol. Scand., 122, 21, 10.1111/j.1600-0404.2009.01229.x
Magira, 2003, Differential distribution of HLA-DQ beta/DR beta epitopes in the two forms of Guillain-Barre syndrome, acute motor axonal neuropathy and acute inflammatory demyelinating polyneuropathy (AIDP): identification of DQ beta epitopes associated with susceptibil, J. Immunol., 170, 3074, 10.4049/jimmunol.170.6.3074
Rodríguez, 2018, Guillain–Barré syndrome, transverse myelitis and infectious diseases, Cell. Mol. Immunol., 15, 547, 10.1038/cmi.2017.142
Wu, 2012, The effect of TNF-alpha, FcgammaR and CD1 polymorphisms on Guillain-Barre syndrome risk: evidences from a meta-analysis, J. Neuroimmunol., 243, 18, 10.1016/j.jneuroim.2011.12.003
Ma, 1998, Genetic contribution of the tumor necrosis factor region in Guillain-Barre syndrome, Ann. Neurol., 44, 815, 10.1002/ana.410440517
Zhang, 2007, Association of tumor necrosis factor polymorphisms with Guillain-Barre syndrome, Eur. Neurol., 58, 21, 10.1159/000102162
Prasad, 2010, Tumor necrosis factor-alpha polymorphisms and expression in Guillain-Barre syndrome, Hum. Immunol., 71, 905, 10.1016/j.humimm.2010.06.013
Geleijns, 2007, Genetic polymorphisms of macrophage-mediators in Guillain-Barre syndrome, J. Neuroimmunol., 190, 127, 10.1016/j.jneuroim.2007.07.008
van Sorge, 2005, Severity of Guillain-Barre syndrome is associated with Fc gamma Receptor III polymorphisms, J. Neuroimmunol., 162, 157, 10.1016/j.jneuroim.2005.01.016
De Angelis, 2007, Polymorphisms of CD1 genes in chronic dysimmune neuropathies, J. Neuroimmunol., 186, 161, 10.1016/j.jneuroim.2007.03.001
Vandiedonck, 2004, Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia, Proc. Natl. Acad. Sci. U. S. A, 101, 15464, 10.1073/pnas.0406756101
Zhu, 2012, HLA-DQA1*03:02/DQB1*03:03:02 is strongly associated with susceptibility to childhood-onset ocular myasthenia gravis in Southern Han Chinese, J. Neuroimmunol., 247, 81, 10.1016/j.jneuroim.2012.03.018
Maniaol, 2012, Late onset myasthenia gravis is associated with HLA DRB1*15:01 in the Norwegian population, PLoS One, 7, 10.1371/journal.pone.0036603
Testi, 2012, Association of HLA-DQB1 *05:02 and DRB1 *16 alleles with late-onset, nonthymomatous, AChR-ab-positive myasthenia gravis, Autoimmune Dis., 2012, 541760
Greve, 2009, The autoimmunity-related polymorphism PTPN22 1858C/T is associated with anti-titin antibody-positive myasthenia gravis, Hum. Immunol., 70, 540, 10.1016/j.humimm.2009.04.027
Huang, 1999, Tumour necrosis factor-alpha polymorphism and secretion in myasthenia gravis, J. Neuroimmunol., 94, 165, 10.1016/S0165-5728(98)00253-7
Jiang, 2018, IL-4Ralpha polymorphism is associated with myasthenia gravis in Chinese han population, Front. Neurol., 9, 529, 10.3389/fneur.2018.00529
Giraud, 2004, Association of the gene encoding the delta-subunit of the muscle acetylcholine receptor (CHRND) with acquired autoimmune myasthenia gravis, Genes Immun., 5, 80, 10.1038/sj.gene.6364041
van der Pol, 2003, Association of the Fc gamma receptor IIA-R/R131 genotype with myasthenia gravis in Dutch patients, J. Neuroimmunol., 144, 143, 10.1016/j.jneuroim.2003.08.043
Huang, 1998, Polymorphisms in IL-1beta and IL-1 receptor antagonist genes are associated with myasthenia gravis, J. Neuroimmunol., 81, 76, 10.1016/S0165-5728(97)00161-6
Huang, 1999, Markers in the promoter region of interleukin-10 (IL-10) gene in myasthenia gravis: implications of diverse effects of IL-10 in the pathogenesis of the disease, J. Neuroimmunol., 94, 82, 10.1016/S0165-5728(98)00228-8
Zagoriti, 2018, Evidence for association of STAT4 and IL12RB2 variants with Myasthenia gravis susceptibility: what is the effect on gene expression in thymus?, J. Neuroimmunol., 319, 93, 10.1016/j.jneuroim.2018.03.008
Mirsattari, 2001, Aboriginals with multiple sclerosis: HLA types and predominance of neuromyelitis optica, Neurology, 56, 317, 10.1212/WNL.56.3.317
Alvarenga, 2017, The HLA DRB1*03:01 allele is associated with NMO regardless of the NMO-IgG status in Brazilian patients from Rio de Janeiro, J. Neuroimmunol., 310, 1, 10.1016/j.jneuroim.2017.05.018
Brill, 2016, Increased occurrence of anti-AQP4 seropositivity and unique HLA Class II associations with neuromyelitis optica (NMO), among Muslim Arabs in Israel, J. Neuroimmunol., 293, 65, 10.1016/j.jneuroim.2016.02.006
Asgari, 2012, HLA, PTPN22 and PD-1 associations as markers of autoimmunity in neuromyelitis optica, Mult. Scler., 18, 23, 10.1177/1352458511417480
Isobe, 2014, Genetic studies of multiple sclerosis and neuromyelitis optica: current status in European, African American and Asian populations, Clin. Exp. Neuroimmunol., 5, 61, 10.1111/cen3.12078
Wang, 2011, HLA-DPB1 0501 is associated with susceptibility to anti-aquaporin-4 antibodies positive neuromyelitis optica in southern Han Chinese, J. Neuroimmunol., 233, 181, 10.1016/j.jneuroim.2010.11.004
Wei, 2014, Human aquaporin 4 gene polymorphisms in Chinese patients with neuromyelitis optica, J. Neuroimmunol., 274, 192, 10.1016/j.jneuroim.2014.07.003
Shi, 2017, STAT4 polymorphisms are associated with neuromyelitis optica spectrum disorders, NeuroMolecular Med., 19, 493, 10.1007/s12017-017-8463-9
Kim, 2010, Common CYP7A1 promoter polymorphism associated with risk of neuromyelitis optica, Neurobiol. Dis., 37, 349, 10.1016/j.nbd.2009.10.013
Wang, 2012, Interleukin 17 gene polymorphism is associated with anti-aquaporin 4 antibody-positive neuromyelitis optica in the Southern Han Chinese--a case control study, J. Neurol. Sci., 314, 26, 10.1016/j.jns.2011.11.005
Liu, 2012, CD226 Gly307Ser association with neuromyelitis optica in Southern Han Chinese, Can. J. Neurol. Sci., 39, 488, 10.1017/S0317167100014001
Shi, 2017, Association of CD40 gene polymorphisms with susceptibility to neuromyelitis optica spectrum disorders, Mol. Neurobiol., 54, 5236, 10.1007/s12035-016-0070-5
Liu, 2017, Association of CD58 gene polymorphisms with NMO spectrum disorders in a Han Chinese population, J. Neuroimmunol., 309, 23, 10.1016/j.jneuroim.2017.05.003
Moosavi, 2016, Role of epigenetics in biology and human diseases, Iran. Biomed. J., 20, 246
Mazzone, 2019, The emerging role of epigenetics in human autoimmune disorders, Clin. Epigenet., 11, 34, 10.1186/s13148-019-0632-2
Robert, 2003, DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells, Nat. Genet., 33, 61, 10.1038/ng1068
Tahiliani, 2009, Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, 324, 930, 10.1126/science.1170116
Bhutani, 2011, DNA demethylation dynamics, Cell, 146, 866, 10.1016/j.cell.2011.08.042
Kular, 2018, DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis, Nat. Commun., 9, 2397, 10.1038/s41467-018-04732-5
Baranzini, 2010, Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis, Nature, 464, 1351, 10.1038/nature08990
Souren, 2019, DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis, Nat. Commun., 10, 2094, 10.1038/s41467-019-09984-3
Neven, 2016, Repetitive element hypermethylation in multiple sclerosis patients, BMC Genet., 17, 84, 10.1186/s12863-016-0395-0
Liggett, 2010, Methylation patterns of cell-free plasma DNA in relapsing-remitting multiple sclerosis, J. Neurol. Sci., 290, 16, 10.1016/j.jns.2009.12.018
Calabrese, 2014, TET2 gene expression and 5-hydroxymethylcytosine level in multiple sclerosis peripheral blood cells, Biochim. Biophys. Acta, 1842, 1130, 10.1016/j.bbadis.2014.04.010
Fagone, 2016, Expression of DNA methylation genes in secondary progressive multiple sclerosis, J. Neuroimmunol., 290, 66, 10.1016/j.jneuroim.2015.11.018
Janson, 2011, Profiling of CD4+ T cells with epigenetic immune lineage analysis, J. Immunol., 186, 92, 10.4049/jimmunol.1000960
Kumagai, 2012, Increased promoter methylation of the immune regulatory gene SHP-1 in leukocytes of multiple sclerosis subjects, J. Neuroimmunol., 246, 51, 10.1016/j.jneuroim.2012.03.003
Bos, 2015, Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis, PLoS One, 10, 10.1371/journal.pone.0117403
Graves, 2014, Methylation differences at the HLA-DRB1 locus in CD4+ T-Cells are associated with multiple sclerosis, Mult. Scler., 20, 1033, 10.1177/1352458513516529
Ewing, 2019, Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression, EBioMed, 43, 411, 10.1016/j.ebiom.2019.04.042
Mastronardi, 2007, Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated, J. Neurosci. Res., 85, 2006, 10.1002/jnr.21329
Huynh, 2014, Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains, Nat. Neurosci., 17, 121, 10.1038/nn.3588
Mamrut, 2017, Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins, J. Autoimmun., 82, 62, 10.1016/j.jaut.2017.05.005
Fang, 2018, CTLA-4 methylation regulates the pathogenesis of myasthenia gravis and the expression of related cytokines, Medicine (Baltim.), 97
Castillo, 2017, Histone post-translational modifications and nucleosome organisation in transcriptional regulation: some open questions, Adv. Exp. Med. Biol., 966, 65, 10.1007/5584_2017_58
Singhal, 2015, Changes in methionine metabolism and histone H3 trimethylation are linked to mitochondrial defects in multiple sclerosis, J. Neurosci., 35, 15170, 10.1523/JNEUROSCI.4349-14.2015
Mastronardi, 2006, Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation, J. Neurosci., 26, 11387, 10.1523/JNEUROSCI.3349-06.2006
Lillico, 2018, Increased post-translational lysine acetylation of myelin basic protein is associated with peak neurological disability in a mouse experimental autoimmune encephalomyelitis model of multiple sclerosis, J. Proteome Res., 17, 55, 10.1021/acs.jproteome.7b00270
Zhang, 2011, Role of HDAC3 on p53 expression and apoptosis in T cells of patients with multiple sclerosis, PLoS One, 6
Saemann, 2000, Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., 14, 2380
Pedre, 2011, Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions, J. Neurosci., 31, 3435, 10.1523/JNEUROSCI.4507-10.2011
Martin, 2015, Role of SIRT1 in autoimmune demyelination and neurodegeneration, Immunol. Res., 61, 187, 10.1007/s12026-014-8557-5
Hewes, 2017, SIRT1 as a potential biomarker of response to treatment with glatiramer acetate in multiple sclerosis, Exp. Mol. Pathol., 102, 191, 10.1016/j.yexmp.2017.01.014
Wei, 2017, Non-coding RNAs as regulators in epigenetics, Oncol. Rep., 37, 3, 10.3892/or.2016.5236
Keller, 2009, Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls, PLoS One, 4, 10.1371/journal.pone.0007440
Waschbisch, 2011, Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis, PLoS One, 6, 10.1371/journal.pone.0024604
Du, 2009, MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis, Nat. Immunol., 10, 1252, 10.1038/ni.1798
McCoy, 2017, miR-155 dysregulation and therapeutic intervention in multiple sclerosis, Adv. Exp. Med. Biol., 1024, 111, 10.1007/978-981-10-5987-2_5
Rusca, 2012, MiR-146a and NF-kappaB1 regulate mast cell survival and T lymphocyte differentiation, Mol. Cell. Biol., 32, 4432, 10.1128/MCB.00824-12
Lecca, 2016, MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis, Sci. Rep., 6, 34503, 10.1038/srep34503
Guerau-de-Arellano, 2015, Analysis of miRNA in normal appearing white matter to identify altered CNS pathways in multiple sclerosis, J. Autoimmune Dis., 1
Cao, 2015, Detecting key genes regulated by miRNAs in dysfunctional crosstalk pathway of myasthenia gravis, BioMed Res. Int., 2015, 724715, 10.1155/2015/724715
Cheng, 2013, MiR-320a is downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by targeting mitogen-activated protein kinase 1, J. Clin. Immunol., 33, 567, 10.1007/s10875-012-9834-5
Lu, 2013, Altered expression of miR-146a in myasthenia gravis, Neurosci. Lett., 555, 85, 10.1016/j.neulet.2013.09.014
Liu, 2016, MiR-15a contributes abnormal immune response in myasthenia gravis by targeting CXCL10, Clin. Immunol., 164, 106, 10.1016/j.clim.2015.12.009
Chunjie, 2015, Disease-specific signature of serum miR-20b and its targets IL-8 and IL-25, in myasthenia gravis patients, Eur. Cytokine Netw., 26, 61, 10.1684/ecn.2015.0367
Zhang, 2016, Decreased microRNA miR-181c expression in peripheral blood mononuclear cells correlates with elevated serum levels of IL-7 and IL-17 in patients with myasthenia gravis, Clin. Exp. Med., 16, 413, 10.1007/s10238-015-0358-1
Cron, 2018, Analysis of microRNA expression in the thymus of Myasthenia Gravis patients opens new research avenues, Autoimmun. Rev., 17, 588, 10.1016/j.autrev.2018.01.008
Sengupta, 2018, MicroRNA and mRNA expression associated with ectopic germinal centers in thymus of myasthenia gravis, PLoS One, 13, 10.1371/journal.pone.0205464
Xin, 2016, miR-20b inhibits T cell proliferation and activation via NFAT signaling pathway in thymoma-associated myasthenia gravis, BioMed Res. Int., 2016, 9595718, 10.1155/2016/9595718
Keller, 2015, Next-generation sequencing identifies altered whole blood microRNAs in neuromyelitis optica spectrum disorder which may permit discrimination from multiple sclerosis, J. Neuroinflammation, 12, 196, 10.1186/s12974-015-0418-1
Chen, 2017, MicroRNAs correlate with multiple sclerosis and neuromyelitis optica spectrum disorder in a Chinese population, Med. Sci. Monit., 23, 2565, 10.12659/MSM.904642
Vaknin-Dembinsky, 2016, Circulating microRNAs as biomarkers for rituximab therapy, in neuromyelitis optica (NMO), J. Neuroinflammation, 13, 179, 10.1186/s12974-016-0648-x
Wucherpfennig, 2001, Mechanisms for the induction of autoimmunity by infectious agents, J. Clin. Investig., 108, 1097, 10.1172/JCI200114235
Cusick, 2012, Molecular mimicry as a mechanism of autoimmune disease, Clin. Rev. Allergy Immunol., 42, 102, 10.1007/s12016-011-8294-7
Miller, 2001, Virus-induced autoimmunity: epitope spreading to myelin autoepitopes in Theiler’s virus infection of the central nervous system, Adv. Virus Res., 56, 199, 10.1016/S0065-3527(01)56008-X
McCoy, 2006, Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation, Autoimmunity, 39, 9, 10.1080/08916930500484799
Johnson, 2018, Neurological syndromes driven by postinfectious processes or unrecognized persistent infections, Curr. Opin. Neurol., 31, 318, 10.1097/WCO.0000000000000553
Ascherio, 2012, The initiation and prevention of multiple sclerosis, Nat. Rev. Neurol., 8, 602, 10.1038/nrneurol.2012.198
Levin, 2010, Primary infection with the Epstein-Barr virus and risk of multiple sclerosis, Ann. Neurol., 67, 824
Kearns, 2018, Multiple sclerosis is caused by three-hits, strictly in order, in genetically susceptible persons, Mult. Scler. Relat. Disord., 24, 157, 10.1016/j.msard.2018.06.014
Donati, 2005, Variant-specific tropism of human herpesvirus 6 in human astrocytes, J. Virol., 79, 9439, 10.1128/JVI.79.15.9439-9448.2005
Fierz, 2017, Multiple sclerosis: an example of pathogenic viral interaction?, Virol. J., 14, 42, 10.1186/s12985-017-0719-3
Cavalcante, 2017, Epstein-Barr virus in tumor-infiltrating B cells of myasthenia gravis thymoma: an innocent bystander or an autoimmunity mediator?, Oncotarget, 8, 95432, 10.18632/oncotarget.20731
Masuda, 2015, Epstein-Barr virus persistence and reactivation in neuromyelitis optica, J. Neurol. Neurosurg. Psychiatry, 86, 1137, 10.1136/jnnp-2014-308095
Mancera-Paez, 2018, Concurrent Guillain-Barre syndrome, transverse myelitis and encephalitis post-Zika: a case report and review of the pathogenic role of multiple arboviral immunity, J. Neurol. Sci., 395, 47, 10.1016/j.jns.2018.09.028
Acosta-Ampudia, 2018, Autoimmune neurological conditions associated with Zika virus infection, Front. Mol. Neurosci., 11, 116, 10.3389/fnmol.2018.00116
Solomon, 2000, Neurological manifestations of dengue infection, Lancet, 355, 1053, 10.1016/S0140-6736(00)02036-5
Balavoine, 2017, Guillain-barre syndrome and chikungunya: description of all cases diagnosed during the 2014 outbreak in the French west Indies, Am. J. Trop. Med. Hyg., 97, 356, 10.4269/ajtmh.15-0753
Geurtsvankessel, 2013, Hepatitis E and guillain-barre syndrome, Clin. Infect. Dis., 57, 1369, 10.1093/cid/cit512
Klemola, 1967, The Guillain-Barre syndrome associated with acquired cytomegalovirus infection, Acta Med. Scand., 181, 603, 10.1111/j.0954-6820.1967.tb07283.x
Orlikowski, 2011, Guillain-Barre syndrome following primary cytomegalovirus infection: a prospective cohort study, Clin. Infect. Dis., 52, 837, 10.1093/cid/cir074
Sawai, 2014, Moesin is a possible target molecule for cytomegalovirus-related Guillain-Barre syndrome, Neurology, 83, 113, 10.1212/WNL.0000000000000566
Lana-Peixoto, 2018, Neuromyelitis optica spectrum disorder associated with dengue virus infection, J. Neuroimmunol., 318, 53, 10.1016/j.jneuroim.2018.02.003
Gilhus, 2018, Myasthenia gravis and infectious disease, J. Neurol., 265, 1251
Schwimmbeck, 1989, Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus, J. Clin. Investig., 84, 1174, 10.1172/JCI114282
Leis, 2014, West nile virus infection and myasthenia gravis, Muscle Nerve, 49, 26, 10.1002/mus.23869
Molko, 2017, Zika virus infection and myasthenia gravis: report of 2 cases, Neurology, 88, 1097, 10.1212/WNL.0000000000003697
Gaydos, 2001, Chlamydia pneumoniae and its proposed link to multiple sclerosis: to be or not to be?, Neurology, 56, 1126, 10.1212/WNL.56.9.1126
Tauber, 2007, Systemic infections in multiple sclerosis and experimental autoimmune encephalomyelitis, Arch. Physiol. Biochem., 113, 124, 10.1080/13813450701531227
Krametter, 2001, Chlamydia pneumoniae in multiple sclerosis: humoral immune responses in serum and cerebrospinal fluid and correlation with disease activity marker, Mult. Scler., 7, 13, 10.1177/135245850100700103
Fainardi, 2004, Intrathecal production of Chlamydia pneumoniae-specific high-affinity antibodies is significantly associated to a subset of multiple sclerosis patients with progressive forms, J. Neurol. Sci., 217, 181, 10.1016/j.jns.2003.09.012
Derfuss, 2001, Intrathecal antibody production against Chlamydia pneumoniae in multiple sclerosis is part of a polyspecific immune response, Brain, 124, 1325, 10.1093/brain/124.7.1325
Du, 2002, Chlamydia pneumoniae infection of the central nervous system worsens experimental allergic encephalitis, J. Exp. Med., 196, 1639, 10.1084/jem.20020393
Kengatharan, 1998, Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure, J. Exp. Med., 188, 305, 10.1084/jem.188.2.305
Schrijver, 2001, Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis, Brain, 124, 1544, 10.1093/brain/124.8.1544
Hoijer, 1997, Expression and intracellular localization of the human N-acetylmuramyl-L-alanine amidase, a bacterial cell wall-degrading enzyme, Blood, 90, 1246, 10.1182/blood.V90.3.1246
Herrmann, 2006, Streptococcus pneumoniae Infection aggravates experimental autoimmune encephalomyelitis via Toll-like receptor 2, Infect. Immun., 74, 4841, 10.1128/IAI.00026-06
Rhodes, 1982, Guillain-Barre syndrome associated with Campylobacter infection, Br. Med. J., 285, 173, 10.1136/bmj.285.6336.173
Tam, 2006, Incidence of Guillain-Barre syndrome among patients with Campylobacter infection: a general practice research database study, J. Infect. Dis., 194, 95, 10.1086/504294
Yuki, 2012, Guillain-Barre syndrome, N. Engl. J. Med., 366, 2294, 10.1056/NEJMra1114525
Gilbert, 2002, The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide, J. Biol. Chem., 277, 327, 10.1074/jbc.M108452200
Kuijf, 2010, TLR4-mediated sensing of Campylobacter jejuni by dendritic cells is determined by sialylation, J. Immunol., 185, 748, 10.4049/jimmunol.0903014
Wakerley, 2013, Infectious and noninfectious triggers in Guillain-Barre syndrome, Expert Rev. Clin. Immunol., 9, 627, 10.1586/1744666X.2013.811119
Sharma, 2011, The presence of Mycoplasma pneumoniae infection and GM1 ganglioside antibodies in Guillain-Barre syndrome, J. Infect. Dev. Ctries., 5, 459, 10.3855/jidc.1508
Anaya, 2017, A comprehensive analysis and immunobiology of autoimmune neurological syndromes during the Zika virus outbreak in Cucuta, Colombia, J. Autoimmun., 77, 123, 10.1016/j.jaut.2016.12.007
Kusunoki, 2001, Anti-Gal-C antibodies in GBS subsequent to mycoplasma infection: evidence of molecular mimicry, Neurology, 57, 736, 10.1212/WNL.57.4.736
Kinoshita, 2014, Microbial and dietary factors modulating intestinal regulatory T cell homeostasis, FEBS Lett., 588, 4182, 10.1016/j.febslet.2014.03.018
Belkaid, 2017, Homeostatic immunity and the microbiota, Immunity, 46, 562, 10.1016/j.immuni.2017.04.008
Ma, 2019, Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis, J. Neuroinflammation, 16, 53, 10.1186/s12974-019-1434-3
Braniste, 2014, The gut microbiota influences blood-brain barrier permeability in mice, Sci. Transl. Med., 6, 10.1126/scitranslmed.3009759
Berer, 2011, Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination, Nature, 479, 538, 10.1038/nature10554
Okuno, 2019, Role of diet, gut microbiota, and metabolism in multiple sclerosis and neuromyelitis optica, Clin. Exp. Neuroimmunol., 10, 12, 10.1111/cen3.12499
Miyake, 2015, Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters, PLoS One, 10, 10.1371/journal.pone.0137429
Jangi, 2016, Alterations of the human gut microbiome in multiple sclerosis, Nat. Commun., 7, 12015, 10.1038/ncomms12015
Chen, 2016, Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls, Sci. Rep., 6, 28484, 10.1038/srep28484
Tremlett, 2016, Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls, BMC Neurol., 16, 182, 10.1186/s12883-016-0703-3
Rumah, 2013, Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease, PLoS One, 8, 10.1371/journal.pone.0076359
Álvarez, 2016, Intestinal microbiota in multiple sclerosis: influence of treatment with interferon β-1b, Mult. Scler. J., 22, 88
Cekanaviciute, 2017, Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models, Proc. Natl. Acad. Sci. U. S. A, 114, 10713, 10.1073/pnas.1711235114
Qiu, 2018, Altered gut microbiota in myasthenia gravis, Front. Microbiol., 9, 2627, 10.3389/fmicb.2018.02627
Moris, 2018, Fecal microbiota profile in a group of myasthenia gravis patients, Sci. Rep., 8, 14384, 10.1038/s41598-018-32700-y
Zamvil, 2018, The gut microbiome in neuromyelitis optica, Neurotherapeutics, 15, 92, 10.1007/s13311-017-0594-z
Cree, 2016, Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens, Ann. Neurol., 80, 443, 10.1002/ana.24718
Gong, 2018, Lack of short-chain fatty acids and overgrowth of opportunistic pathogens define dysbiosis of neuromyelitis optica spectrum disorders: a Chinese pilot study, Mult. Scler.
Handel, 2011, Smoking and multiple sclerosis: an updated meta-analysis, PLoS One, 6, 10.1371/journal.pone.0016149
Hedstrom, 2013, Smoking and multiple sclerosis susceptibility, Eur. J. Epidemiol., 28, 867, 10.1007/s10654-013-9853-4
Hedstrom, 2009, Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis, Neurology, 73, 696, 10.1212/WNL.0b013e3181b59c40
Correale, 2006, The risk of relapses in multiple sclerosis during systemic infections, Neurology, 67, 652, 10.1212/01.wnl.0000233834.09743.3b
Correale, 2015, Smoking worsens multiple sclerosis prognosis: two different pathways are involved, J. Neuroimmunol., 281, 23, 10.1016/j.jneuroim.2015.03.006
Ammitzboll, 2019, GPR15(+) T cells are Th17 like, increased in smokers and associated with multiple sclerosis, J. Autoimmun., 97, 114, 10.1016/j.jaut.2018.09.005
Jick, 2014, Mortality of patients with multiple sclerosis: a cohort study in UK primary care, J. Neurol., 261, 1508
Gratton, 2016, Cigarette smoking and activities of daily living in ocular myasthenia gravis, J. Neuro Ophthalmol., 36, 37, 10.1097/WNO.0000000000000306
Maniaol, 2013, Smoking and socio-economic status may affect myasthenia gravis, Eur. J. Neurol., 20, 453, 10.1111/j.1468-1331.2012.03843.x
Zhao, 2019, Emerging role of air pollution in autoimmune diseases, Autoimmun. Rev., 18, 607, 10.1016/j.autrev.2018.12.010
Genc, 2012, The adverse effects of air pollution on the nervous system, J. Toxicol., 2012, 782462
Esmaeil Mousavi, 2017, Multiple sclerosis and air pollution exposure: mechanisms toward brain autoimmunity, Med. Hypotheses, 100, 23, 10.1016/j.mehy.2017.01.003
Jeanjean, 2018, Ozone, NO2 and PM10 are associated with the occurrence of multiple sclerosis relapses. Evidence from seasonal multi-pollutant analyses, Environ. Res., 163, 43, 10.1016/j.envres.2018.01.040
Roux, 2017, Air pollution by particulate matter PM10 may trigger multiple sclerosis relapses, Environ. Res., 156, 404, 10.1016/j.envres.2017.03.049
Oikonen, 2003, Ambient air quality and occurrence of multiple sclerosis relapse, Neuroepidemiology, 22, 95, 10.1159/000067108
Palacios, 2017, Exposure to particulate matter air pollution and risk of multiple sclerosis in two large cohorts of US nurses, Environ. Int., 109, 64, 10.1016/j.envint.2017.07.013
Bartosik-Psujek, 2019, Vitamin D as an immune modulator in multiple sclerosis, Neurol. Neurochir. Pol., 53, 113, 10.5603/PJNNS.a2019.0015
Baarnhielm, 2014, Fatty fish intake is associated with decreased occurrence of multiple sclerosis, Mult. Scler., 20, 726, 10.1177/1352458513509508
Sintzel, 2018, Vitamin D and multiple sclerosis: a comprehensive review, Neurol. Ther., 7, 59, 10.1007/s40120-017-0086-4
Veldman, 2000, Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system, Arch. Biochem. Biophys., 374, 334, 10.1006/abbi.1999.1605
Lu, 2018, Genomic effects of the vitamin D receptor: potentially the link between vitamin D, immune cells, and multiple sclerosis, Front. Immunol., 9, 477, 10.3389/fimmu.2018.00477
Mayne, 2011, 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis, Eur. J. Immunol., 41, 822, 10.1002/eji.201040632
Ramasamy, 2014, Genetic evidence for a pathogenic role for the vitamin D3 metabolizing enzyme CYP24A1 in multiple sclerosis, Mult. Scler. Relat. Disord., 3, 211, 10.1016/j.msard.2013.08.009
V Ramagopalan, 2009, Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D, PLoS Genet., 5, 10.1371/journal.pgen.1000369
Decard, 2012, Low vitamin D and elevated immunoreactivity against Epstein-Barr virus before first clinical manifestation of multiple sclerosis, J. Neurol. Neurosurg. Psychiatry, 83, 1170, 10.1136/jnnp-2012-303068
Rosjo, 2017, Effect of high-dose vitamin D3 supplementation on antibody responses against Epstein-Barr virus in relapsing-remitting multiple sclerosis, Mult. Scler., 23, 395, 10.1177/1352458516654310
Rolf, 2018, Exploring the effect of vitamin D3 supplementation on the anti-EBV antibody response in relapsing-remitting multiple sclerosis, Mult. Scler., 24, 1280, 10.1177/1352458517722646
Kang, 2018, Low serum vitamin D levels in patients with myasthenia gravis, J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas., 50, 294
Gao, 2019, Low levels of vitamin D and the relationship between vitamin D and Th2 axis-related cytokines in neuromyelitis optica spectrum disorders, J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas., 61, 22
Miller, 2005, Vitamin B12, demyelination, remyelination and repair in multiple sclerosis, J. Neurol. Sci., 233, 93, 10.1016/j.jns.2005.03.009
Romero, 2007, Endocrinology of stress, Int. J. Comp. Psychol., 20, 10.46867/IJCP.2007.20.02.15
Mohr, 2006, A temporal framework for understanding the effects of stressful life events on inflammation in patients with multiple sclerosis, Brain Behav. Immun., 20, 27, 10.1016/j.bbi.2005.03.011
Djelilovic-Vranic, 2012, Stress as provoking factor for the first and repeated multiple sclerosis seizures, Mater. Sociomed., 24, 142, 10.5455/msm.2012.24.142-147
Yamout, 2010, The effect of war stress on multiple sclerosis exacerbations and radiological disease activity, J. Neurol. Sci., 288, 42, 10.1016/j.jns.2009.10.012
Salemi, 2010, Could autoimmunity be induced by vaccination?, Int. Rev. Immunol., 29, 247, 10.3109/08830181003746304
Mouchet, 2018, Hepatitis B vaccination and the putative risk of central demyelinating diseases - a systematic review and meta-analysis, Vaccine, 36, 1548, 10.1016/j.vaccine.2018.02.036
Meggiolaro, 2018, Association between human papilloma virus (HPV) vaccination and risk of multiple sclerosis: a systematic review, Hum. Vaccines Immunother., 14, 1266, 10.1080/21645515.2017.1423155
Alicino, 2014, Acute disseminated encephalomyelitis with severe neurological outcomes following virosomal seasonal influenza vaccine, Hum. Vaccines Immunother., 10, 1969, 10.4161/hv.28961
Gnanajothy, 2017, Acute disseminated encephalomyelitis following meningococcal vaccination: case report and review of the literature, Conn. Med., 81, 103
Cowan, 1993, Acute encephalopathy and chronic neurological damage after pertussis vaccine, Vaccine, 11, 1371, 10.1016/0264-410X(93)90163-R
Kulkarni, 2004, Biphasic demyelination of the nervous system following anti-rabies vaccination, Neurol. India, 52, 106
Blumenthal, 2004, Possible association of Guillain-Barre syndrome and hepatitis A vaccination, Pediatr. Infect. Dis. J., 23, 586, 10.1097/01.inf.0000130941.72712.33
Kao, 2004, Guillain-Barre syndrome coexisting with pericarditis or nephrotic syndrome after influenza vaccination, Clin. Neurol. Neurosurg., 106, 136, 10.1016/j.clineuro.2003.11.002
2016, Human papillomavirus vaccines and Guillain-Barre syndrome: managing uncertainties, Prescrire Int., 25, 265
Juurlink, 2006, Guillain-Barre syndrome after influenza vaccination in adults: a population-based study, Arch. Intern. Med., 166, 2217, 10.1001/archinte.166.20.2217
Drosos, 1993, D-penicillamine induced myasthenia gravis: clinical, serological and genetic findings, Clin. Exp. Rheumatol., 11, 387
Penn, 1998, Drug-induced autoimmune myasthenia gravis, 433
Jones, 2014, The causes of drug-induced muscle toxicity, Curr. Opin. Rheumatol., 26, 697, 10.1097/BOR.0000000000000108
Alshekhlee, 2010, Chronic inflammatory demyelinating polyneuropathy associated with tumor necrosis factor-alpha antagonists, Muscle Nerve, 41, 723, 10.1002/mus.21584
Brunasso, 2014, New onset of dermatomyositis/polymyositis during anti-TNF-α therapies: a systematic literature review, ScientificWorldJournal, 2014, 179180, 10.1155/2014/179180
Kozielewicz, 2015, Acute liver failure and liver transplantation in a patient with multiple sclerosis treated with interferon beta, Neurol. Neurochir. Pol., 49, 451, 10.1016/j.pjnns.2015.08.006
Joubert, 2017, Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis, Neurol. Neuroimmunol. Neuroinflammation., 4, e371, 10.1212/NXI.0000000000000371
Hsiao, 2017, Mutational analysis of ITPR1 in a Taiwanese cohort with cerebellar ataxias, PLoS One, 12, 10.1371/journal.pone.0187503
Fang, 2017, Advances in autoimmune epilepsy associated with antibodies, their potential pathogenic molecular mechanisms, and current recommended immunotherapies, Front. Immunol., 8, 395, 10.3389/fimmu.2017.00395
Caruso, 2018, Focus on neuro-Behcet’s disease: a review, Neurol. India, 66, 1619, 10.4103/0028-3886.246252
Ortiz-Fernandez, 2015, Variants of the IFI16 gene affecting the levels of expression of mRNA are associated with susceptibility to Behcet disease, J. Rheumatol., 42, 695, 10.3899/jrheum.140949
Mizuki, 2010, Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behcet’s disease susceptibility loci, Nat. Genet., 42, 703, 10.1038/ng.624
Remmers, 2010, Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet’s disease, Nat. Genet., 42, 698, 10.1038/ng.625
Kirino, 2013, Genome-wide association analysis identifies new susceptibility loci for Behcet’s disease and epistasis between HLA-B*51 and ERAP1, Nat. Genet., 45, 202, 10.1038/ng.2520
Iijima, 2011, Polymorphism of transient axonal glycoprotein-1 in chronic inflammatory demyelinating polyneuropathy, J. Peripher. Nerv. Syst., 16, 52, 10.1111/j.1529-8027.2011.00308.x
Mrad, 2013, Association of HLA-DR/DQ polymorphism with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) in Tunisian patients, Transfus. Apher. Sci., 49, 623, 10.1016/j.transci.2013.07.024
Notturno, 2008, Susceptibility to chronic inflammatory demyelinating polyradiculoneuropathy is associated to polymorphic GA repeat in the SH2D2A gene, J. Neuroimmunol., 197, 124, 10.1016/j.jneuroim.2008.04.003
Wirtz, 2001, HLA class I and II in Lambert-Eaton myasthenic syndrome without associated tumor, Hum. Immunol., 62, 809, 10.1016/S0198-8859(01)00270-1
Arnett, 1996, Interrelationship of major histocompatibility complex class II alleles and autoantibodies in four ethnic groups with various forms of myositis, Arthritis Rheum., 39, 1507, 10.1002/art.1780390910
Chinoy, 2011, Recent advances in the immunogenetics of idiopathic inflammatory myopathy, Arthritis Res. Ther., 13, 216, 10.1186/ar3327
Mamyrova, 2008, Cytokine gene polymorphisms as risk and severity factors for juvenile dermatomyositis, Arthritis Rheum., 58, 3941, 10.1002/art.24039
Werth, 2002, Mannose binding lectin (MBL) polymorphisms associated with low MBL production in patients with dermatomyositis, J. Investig. Dermatol., 119, 1394, 10.1046/j.1523-1747.2002.19608.x
Chinoy, 2008, The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients, Arthritis Rheum., 58, 3247, 10.1002/art.23900
Sugiura, 2012, Positive association between STAT4 polymorphisms and polymyositis/dermatomyositis in a Japanese population, Ann. Rheum. Dis., 71, 1646, 10.1136/annrheumdis-2011-200839
Chen, 2014, Genetic association study of TNFAIP3, IFIH1, IRF5 polymorphisms with polymyositis/dermatomyositis in Chinese Han population, PLoS One, 9
Miyagawa, 2019, Genetics of narcolepsy, Hum. Genome Var., 6, 4, 10.1038/s41439-018-0033-7
Faraco, 2013, ImmunoChip study implicates antigen presentation to T cells in narcolepsy, PLoS Genet., 9, 10.1371/journal.pgen.1003270
Kornum, 2011, Common variants in P2RY11 are associated with narcolepsy, Nat. Genet., 43, 66, 10.1038/ng.734
Shimada, 2018, Epigenome-wide association study of DNA methylation in narcolepsy: an integrated genetic and epigenetic approach, Sleep, 41, 10.1093/sleep/zsy019
Holm, 2014, miRNA profiles in plasma from patients with sleep disorders reveal dysregulation of miRNAs in narcolepsy and other central hypersomnias, Sleep, 37, 1525, 10.5665/sleep.4004
Liguori, 2015, MicroRNA expression is dysregulated in narcolepsy: a new evidence?, Sleep Med., 16, 1027, 10.1016/j.sleep.2015.03.016
Zhu, 2017, Promoter hypermethylation of GATA3, IL-4, and TGF-beta confers susceptibility to vogt-koyanagi-harada disease in han Chinese, Investig. Ophthalmol. Vis. Sci., 58, 1529, 10.1167/iovs.16-21188
Chang, 2018, MicroRNA-20a-5p suppresses IL-17 production by targeting OSM and CCL1 in patients with Vogt-Koyanagi-Harada disease, Br. J. Ophthalmol., 102, 282, 10.1136/bjophthalmol-2017-311079
Liu, 2017, MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway, Brain Res. Bull., 132, 139, 10.1016/j.brainresbull.2017.05.004
Ugurel, 2016, Increased complexin-1 and decreased miR-185 expression levels in Behcet’s disease with and without neurological involvement, Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol., 37, 411
Lv, 2016, MicroRNA expression profiling in Guillain-Barre syndrome, J. Neuroimmunol., 301, 12, 10.1016/j.jneuroim.2016.10.014
Nogalska, 2010, Decreased SIRT1 deacetylase activity in sporadic inclusion-body myositis muscle fibers, Neurobiol. Aging, 31, 1637, 10.1016/j.neurobiolaging.2008.08.021
Hirai, 2018, Circulating plasma microRNA profiling in patients with polymyositis/dermatomyositis before and after treatment: miRNA may be associated with polymyositis/dermatomyositis, Inflamm. Regen., 38, 1, 10.1186/s41232-017-0058-1
Georgantas, 2014, Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies, Arthritis Rheum., 66, 1022, 10.1002/art.38292
Yin, 2016, MiR-146a regulates inflammatory infiltration by macrophages in polymyositis/dermatomyositis by targeting TRAF6 and affecting IL-17/ICAM-1 pathway, Cell. Physiol. Biochem., 40, 486, 10.1159/000452563