Identifying Movement States From Location Data Using Cluster Analysis

Journal of Wildlife Management - Tập 74 Số 3 - Trang 588-594 - 2010
Bram Van Moorter1, Darcy R. Visscher2, Christopher L. Jerde2, Jacqueline L. Frair2, Evelyn H. Merrill2
1aDepartment of Biology, Norwegian Institute of Technology in Tronheim, Høgskoleringen 5, NO-7491 Tro
2bDepartment of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada

Tóm tắt

ABSTRACT  Animal movement studies regularly use movement states (e.g., slow and fast) derived from remotely sensed locations to make inferences about strategies of resource use. However, the number of movement state categories used is often arbitrary and rarely inferred from the data. Identifying groups with similar movement characteristics is a statistical problem. We present a framework based on k‐means clustering and gap statistic for evaluating the number of movement states without making a priori assumptions about the number of clusters. This allowed us to distinguish 4 movement states using turning angle and step length derived from Global Positioning System locations and head movements derived from tip switches in a neck collar of free‐ranging elk (Cervus elaphus) in west central Alberta, Canada. Based on movement characteristics and on the linkage between each state and landscape features, we were able to identify inter‐patch movements, intra‐patch foraging, rest, and inter‐patch foraging movements. Linking behavior to environment (e.g., state‐dependent habitat use) can inform decisions on landscape management for wildlife.

Từ khóa


Tài liệu tham khảo

Adrados C., 2003, GPS approach to study fin‐scale site used by wild red deer, Wildlife Society Bulletin, 31, 544

10.1890/08-0162.1

10.1007/s10344-009-0284-1

Burnham K. P., 2002, Model selection and multimodel inference: a Practical information‐theoretical approach

Calinski R. B., 1974, A dendrite method for cluster analysis, Communications in Statistics, 3, 1

10.2307/2390050

10.1890/0012-9658(2003)084[0282:UFPTIT]2.0.CO;2

10.1080/01621459.1958.10501479

10.1007/s10980-005-2075-8

10.1111/j.0021-8901.2004.00902.x

10.2193/2006-141

10.1371/journal.pone.0005632

10.1890/04-0895

10.2307/1941448

10.1007/BF02573958

10.1046/j.1365-2656.2002.00595.x

10.2307/2533879

10.2307/3956

10.1007/BF00379695

Kaufman L., 1990, An introduction to cluster analysis

Legendre P., 1998, Numerical ecology

10.1016/0169-5347(96)81094-9

10.1016/j.aca.2003.12.020

10.1163/156853907782418213

MacQueen J., 1967, Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, 281

10.1016/0168-1591(91)90252-S

10.1007/BF02294245

10.1890/03-0269

10.1073/pnas.0800375105

10.2461/wbp.2007.3.1

10.1016/j.tree.2007.10.009

10.2307/3546591

10.1348/000711005X48266

10.1037/1082-989X.11.2.178

10.1080/00273170701836695

10.1111/1467-9868.00293

Turchin P., 1998, Quantitative analysis of movement

10.1016/j.foreco.2008.08.018

10.2307/2389612

Yingqiu L. L.Wei andL.Yun‐Chun.2007.Network traffic classification using k‐means clustering. Second International Multi‐Symposiums on Computer and Computational Sciences 2007:360–365.