Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

Ren Li, Mingxing Zhou, Jine Li, Zihua Wang, Weikai Zhang, Chunyan Yue, Yan Ma, Hailin Peng1, Zhiyuan Hu
1#N#Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

J.G. Paez, P.A. Jänne, J.C. Lee, S. Tracy, H. Greulich et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676), 1497–1500 (2004). https://doi.org/10.1126/science.1099314

J. Richard, C. Sainsbury, G. Needham, J. Farndon, A. Malcolm, A. Harris, Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 329(8547), 1398–1402 (1987). https://doi.org/10.1016/S0140-6736(87)90593-9

M. Prewett, P. Rockwell, R. Rockwell, N.A. Giorgio, J. Mendelsohn, H.I. Scher, N.I. Goldstein, The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J. Immunother. Emphas. Tumor Immunol. 19(6), 419–427 (1996). https://doi.org/10.1097/00002371-199611000-00006

N. Bardeesy, R.A. De Pinho, Pancreatic cancer biology and genetics. Nat. Rev. Cancer 2(12), 897–909 (2002). https://doi.org/10.1038/nrc949

A. Levitzki, A. Gazit, Tyrosine kinase inhibition: an approach to drug development. Science 267(5205), 1782–1788 (1995). https://doi.org/10.1126/science.7892601

M.G. Kris, R.B. Natale, R.S. Herbst, T.J. Lynch Jr., D. Prager et al., Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290(16), 2149–2158 (2003). https://doi.org/10.1001/jama.290.16.2149

A. Gazdar, Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28(1), 24–31 (2009). https://doi.org/10.1038/onc.2009.198

R. Sordella, D.W. Bell, D.A. Haber, J. Settleman, Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305(5687), 1163–1167 (2004). https://doi.org/10.1126/science.1101637

H. Greulich, T.-H. Chen, W. Feng, P.A. Jänne, J.V. Alvarez et al., Oncogenic transformation by inhibitor-sensitive and-resistant EGFR mutants. PLoS Med. 2(11), e313 (2005). https://doi.org/10.1371/journal.pmed.0020313

C.-H. Yun, K.E. Mengwasser, A.V. Toms, M.S. Woo, H. Greulich, K.-K. Wong, M. Meyerson, M.J. Eck, The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. 105(6), 2070–2075 (2008). https://doi.org/10.1073/pnas.0709662105

L.V. Sequist, R.G. Martins, D. Spigel, S.M. Grunberg, A. Spira et al., First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 26(15), 2442–2449 (2008). https://doi.org/10.1200/JCO.2007.14.8494

R. Rosell, E. Carcereny, R. Gervais, A. Vergnenegre, B. Massuti et al., Erlotinib versus standard chemotherapy as first-line treatment for european patients with advanced EGFR mutation-positive non-small-cell lung cancer (eurtac): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13(3), 239–246 (2012). https://doi.org/10.1016/S1470-2045(11)70393-X

L.V. Sequist, J.C.H. Yang, N. Yamamoto, K. O’Byrne, V. Hirsh et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31(27), 3327–3334 (2013). https://doi.org/10.1200/JCO.2012.44.2806

J.R. Grandis, M.F. Melhem, E.L. Barnes, D.J. Tweardy, Quantitative immunohistochemical analysis of transforming growth factor-α and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer 78(6), 1284–1292 (1996). https://doi.org/10.1002/(SICI)1097-0142(19960915)78:6<1284:AID-CNCR17>3.0.CO;2-X

D. Atkins, K.-A. Reiffen, C.L. Tegtmeier, H. Winther, M.S. Bonato, S. Störkel, Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues variation in staining intensity due to choice of fixative and storage time of tissue sections. J. Histochem. Cytochem. 52(7), 893–901 (2004). https://doi.org/10.1369/jhc.3A6195.2004

N. Matsuo, K. Azuma, K. Sakai, S. Hattori, A. Kawahara et al., Association of EGFR exon 19 deletion and EGFR-TKI treatment duration with frequency of T790M mutation in EGFR-mutant lung cancer patients. Sci. Rep. 6(4), 267–277 (2016). https://doi.org/10.1038/srep36458

X. Tang, H. Shigematsu, B.N. Bekele, J.A. Roth, J.D. Minna, W.K. Hong, A.F. Gazdar, I.I. Wistuba, EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res. 65(17), 7568–7572 (2005). https://doi.org/10.1158/0008-5472.CAN-05-1705

S.K. Singh, I.D. Clarke, M. Terasaki, V.E. Bonn, C. Hawkins, J. Squire, P.B. Dirks, Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18), 5821–5828 (2003). http://cancerres.aacrjournals.org/content/63/18/5821

D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013

X. Fan, F.B. Furnari, W.K. Cavenee, J.S. Castresana, Non-isotopic silver-stained SSCP is more sensitive than automated direct sequencing for the detection of PTEN mutations in a mixture of DNA extracted from normal and tumor cells. Int. J. Oncol. 18(5), 1023–1026 (2001). https://doi.org/10.3892/ijo.18.5.1023

M. Geens, H. Van de Velde, G. De Block, E. Goossens, A. Van Steirteghem, H. Tournaye, The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum. Reprod. 22(3), 733–742 (2007). https://doi.org/10.1093/humrep/del418

W. Bonner, H. Hulett, R. Sweet, L. Herzenberg, Fluorescence activated cell sorting. Rev. Sci. Instrum. 43(3), 404–409 (1972). https://doi.org/10.1063/1.1685647

M.G. Roper, Cellular analysis using microfluidics. Anal. Chem. 88(1), 381–394 (2015). https://doi.org/10.1021/acs.analchem.5b04532

C.E. Yoo, J.-M. Park, H.-S. Moon, J.-G. Joung, D.-S. Son et al., Vertical magnetic separation of circulating tumor cells for somatic genomic-alteration analysis in lung cancer patients. Sci. Rep. 6, 37392 (2016). https://doi.org/10.1038/srep37392

D. Ren, Y. Xia, B. Wang, Z. You, Multiplexed analysis for anti-epidermal growth factor receptor tumor cell growth inhibition based on quantum dot probes. Anal. Chem. 88(8), 4318–4327 (2016). https://doi.org/10.1021/acs.analchem.5b04471

Y. Yang, H.S. Rho, M. Stevens, A.G. Tibbe, H. Gardeniers, L.W. Terstappen, Microfluidic device for DNA amplification of single cancer cells isolated from whole blood by self-seeding microwells. Lab Chip 15(22), 4331–4337 (2015). https://doi.org/10.1039/C5LC00816F

D. Pekin, Y. Skhiri, J.-C. Baret, D. Le Corre, L. Mazutis et al., Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13), 2156–2166 (2011). https://doi.org/10.1039/c1lc20128j

Y. Zhang, Y. Tang, S. Sun, Z. Wang, W. Wu et al., Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 87(19), 9761–9768 (2015). https://doi.org/10.1021/acs.analchem.5b01901

T. Yeo, S.J. Tan, C.L. Lim, D.P.X. Lau, Y.W. Chua et al., Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 6, 22076 (2016). https://doi.org/10.1038/srep22076

Y. Fu, C. Li, S. Lu, W. Zhou, F. Tang, X.S. Xie, Y. Huang, Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl. Acad. Sci. 112(38), 11923–11928 (2015). https://doi.org/10.1073/pnas.1513988112

K.-I. Goh, M.E. Cusick, D. Valle, B. Childs, M. Vidal, A.-L. Barabási, The human disease network. Proc. Natl. Acad. Sci. 104(21), 8685–8690 (2007). https://doi.org/10.1073/pnas.0701361104

T.K. Yung, K.C. Chan, T.S. Mok, J. Tong, K.F. To, Y.M. Lo, Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital pcr in non-small cell lung cancer patients. Clin. Cancer Res. 15(6), 2076–2084 (2009). https://doi.org/10.1158/1078-0432.CCR-08-2622

L. Zhang, X. Cui, K. Schmitt, R. Hubert, W. Navidi, N. Arnheim, Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. 89(13), 5847–5851 (1992). https://doi.org/10.1073/pnas.89.13.5847

H.A. Hammond, L. Jin, Y. Zhong, C.T. Caskey, R. Chakraborty, Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am. J. Hum. Genet. 55(1), 175–189 (1994). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1918216/pdf/ajhg00040-0180.pdf

S.S. Sridhar, L. Seymour, F.A. Shepherd, Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol. 4(7), 397–406 (2003). https://doi.org/10.1016/S1470-2045(03)01137-9

H. Bai, Z. Wang, K. Chen, J. Zhao, J.J. Lee et al., Influence of chemotherapy on EGFR mutation status among patients with non-small-cell lung cancer. J. Clin. Oncol. 30(25), 3077–3083 (2012). https://doi.org/10.1200/JCO.2011.39.3744