Identification of the spatial patterns and controlling factors of Se in soil and rice in Guangxi through hot spot analysis

Environmental Geochemistry and Health - Tập 45 - Trang 4477-4492 - 2023
Xu Liu1, Chaosheng Zhang2, Tao Yu3,4, Wenbing Ji5, Tiansheng Wu6, Xiaoxiong Zhuo6, Cheng Li1, Bo Li1, Lei Wang6, Yuxiang Shao7, Kun Lin1, Xudong Ma1, Zhongfang Yang1,4
1School of Earth Sciences and Resources, China University of Geosciences, Beijing, People’s Republic of China
2International Network for Environment and Health (INEH), School of Geography, Archaeology and Irish Studies & Ryan Institute, University of Galway, Galway, Ireland
3School of Science, China University of Geosciences, Beijing, People’s Republic of China
4Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing, People’s Republic of China
5State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, People’s Republic of China
6Guangxi Institute of Geological Survey, Nanning, People’s Republic of China
7Applied Geological Research Center, China Geological Survey, Chengdu, People’s Republic of China

Tóm tắt

Selenium (Se) is essential to human health, anti-cancer, possessing antioxidant, and antiviral properties. In this study, the spatial patterns of rice Se and their varying relationship with soil Se on a regional scale were studied using hot spot analysis for the agricultural soils in Guangxi. According to the hot and cold spot maps, rice Se correlates positively with soil Se in Guangxi agricultural soils. High rice Se accompanies high soil Se in the central part of Guangxi (e.g., Liuzhou, Laibin), and low rice Se is in line with low soil Se in the western part (e.g., Baise). However, the hot spot analysis maps indicate that southwestern Guangxi exhibits a special characteristic of low rice Se with high soil Se (e.g., Chongzuo). This special pattern is strongly associated with the high concentrations of Fe2O3 (ferromanganese nodules) in the carbonate rock area. The hot spot analysis proves useful in revealing the spatial patterns of rice Se in Guangxi and identifying the hidden patterns.

Tài liệu tham khảo

Alessa, L. N., Kliskey, A. A., & Brown, G. (2008). Social–ecological hotspots mapping: A spatial approach for identifying coupled social–ecological space. Landscape and Urban Planning, 85, 27–39. https://doi.org/10.1016/j.landurbplan.2007.09.007 Ansong, D., Renwick, C. B., Okumu, M., Ansong, E., & Wabwire, C. J. (2018). Gendered geographical inequalities in junior high school enrollment: Do infrastructure, human, and financial resources matter? Journal of Economic Studies, 45, 411–425. https://doi.org/10.1108/JES-10-2016-0211 Arthur Getis, J. K., & Ord, J. K. (2010). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x Braithwaite, A., & Li, Q. (2007). Transnational terrorism hot spots: Identification and impact evaluation. Conflict Management and Peace Science, 24, 281–296. https://doi.org/10.1080/07388940701643623 Buccianti, A., & Grunsky, E. (2014). Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? Journal of Geochemical Exploration, 141, 1–5. https://doi.org/10.1016/j.gexplo.2014.03.022 Caruso, J. C., & Cliff, N. (1997). Empirical size, coverage, and power of confidence intervals for spearman’s rho. Educational and Psychological Measurement, 57, 637–654. https://doi.org/10.1177/0013164497057004009 Chang, C., Yin, R., Wang, X., Shao, S., Chen, C., & Zhang, H. (2019). Selenium translocation in the soil-rice system in the Enshi seleniferous area, central China. Science of the Total Environment, 669, 83–90. https://doi.org/10.1016/j.scitotenv.2019.02.451 Coppin, F., Chabroullet, C., Martin-Garin, A., Balesdent, J., & Gaudet, J. P. (2006). Methodological approach to assess the effect of soil ageing on selenium behaviour: First results concerning mobility and solid fractionation of selenium. Biology and Fertility of Soils, 42, 379–386. https://doi.org/10.1007/s00374-006-0080-y Dhillon, K. S., & Dhillon, S. K. (1999). Adsorption-desorption reactions of selenium in some soils of India. Geoderma, 93, 19–31. https://doi.org/10.1016/S0016-7061(99)00040-3 Dinh, Q. T., Cui, Z., Huang, J., Tran, T. A. T., Wang, D., Yang, W., et al. (2018). Selenium distribution in the Chinese environment and its relationship with human health: A review. Environment International, 112, 294–309. https://doi.org/10.1016/j.envint.2017.12.035 Dinh, Q. T., Wang, M., Tran, T. A. T., Zhou, F., Wang, D., Zhai, H., et al. (2019). Bioavailability of selenium in soil-plant system and a regulatory approach. Critical Reviews in Environmental Science and Technology, 49, 443–517. https://doi.org/10.1080/10643389.2018.1550987 Dousova, B., Buzek, F., Herzogova, L., Machovic, V., & Lhotka, M. (2015). Effect of organic matter on arsenic(V) and antimony(V) adsorption in soils. European Journal of Soil Science, 66, 74–82. https://doi.org/10.1111/ejss.12206 Dumont, E., Vanhaecke, F., & Cornelis, R. (2006). Selenium speciation from food source to metabolites: A critical review. Analytical and Bioanalytical Chemistry, 385, 1304–1323. https://doi.org/10.1007/s00216-006-0529-8 Duncan, E. G., Maher, W. A., Jagtap, R., Krikowa, F., Roper, M. M., & O’Sullivan, C. A. (2017). Selenium speciation in wheat grain varies in the presence of nitrogen and sulphur fertilisers. Environmental Geochemistry and Health, 39(4), 955–966. https://doi.org/10.1007/s10653-016-9857-6 Egozcue, J. J., & Pawlowsky-Glahn, V. (2019). Compositional data: The sample space and its structure. TEST, 28, 599–638. https://doi.org/10.1007/s11749-019-00670-6 El Mehdawi, A. F., Jiang, Y., Guignardi, Z. S., Esmat, A., Pilon, M., Pilon Smits, E. A. H., et al. (2018). Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. The New Phytologist, 217, 194–205. https://doi.org/10.1111/nph.14838 ESRI. (2021). How hot spot analysis (Getis-Ord Gi*) works, https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm Fernández-Martínez, A., & Charlet, L. (2009). Selenium environmental cycling and bioavailability: A structural chemist point of view. Reviews in Environmental Science and Bio/technology, 8, 81–110. https://doi.org/10.1007/s11157-009-9145-3 Fordyce, F. (2007). Selenium geochemistry and health. Ambio, 36, 94–97. https://doi.org/10.1579/0044-7447(2007)36[94:SGAH]2.0.CO;2 Gao, J., Liu, Y., Huang, Y., Lin, Z., Bañuelos, G. S., Lam, M. H., et al. (2011). Daily selenium intake in a moderate selenium deficiency area of Suzhou China. Food Chemistry, 126, 1088–1093. https://doi.org/10.1016/J.FOODCHEM.2010.11.137 Geering, H. R., Cary, E. E., Jones, L. H. P., & Allaway, W. H. (1968). Solubility and redox criteria for the possible forms of selenium in soils. Soil Science Society of America Journal, 32, 35–40. https://doi.org/10.2136/sssaj1968.03615995003200010009x Hayes, K. F., & Leckie, J. O. (1987). Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. Journal of Colloid & Interface Science, 115, 564–572. https://doi.org/10.1016/0021-9797(88)90039-2 Ji, W., Yang, Z., Yu, T., Yang, Q., Wen, Y., & Wu, T. (2020). Potential ecological risk assessment of heavy metals in the Fe-Mn nodules in the karst area of Guangxi, Southwest China. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-020-02837-6 Jiao, L., Zhang, L., Zhang, Y., Wang, R., Lu, B., & Liu, X. (2022). Transcriptome analysis provides new insight into the distribution and transport of selenium and its associated metals in selenium-rich rice. Environmental Pollution, 301, 118980. https://doi.org/10.1016/j.envpol.2022.118980 Jordan, G., Petrik, A., De Vivo, B., Albanese, S., Demetriades, A., & Sadeghi, M. (2018). GEMAS: Spatial analysis of the Ni distribution on a continental-scale using digital image processing techniques on European agricultural soil data. Journal of Geochemical Exploration, 186, 143–157. https://doi.org/10.1016/j.gexplo.2017.11.011 Lee, S., Doolittle, J. J., & Woodard, H. J. (2011). Selenite adsorption and desorption in selected south dakota soils as a function of pH and other oxyanions. Soil Science, 176, 73–79. https://doi.org/10.1097/SS.0b013e31820a0ff6 Lenz, M., & Lens, P. N. L. (2009). The essential toxin: The changing perception of selenium in environmental sciences. Science of the Total Environment, 407, 3620–3633. https://doi.org/10.1016/j.scitotenv.2008.07.056 Li, C., Yang, Z., Yu, T., Hou, Q., Liu, X., Wang, J., et al. (2021). Study on safe usage of agricultural land in karst and non-karst areas based on soil Cd and prediction of Cd in rice: A case study of Heng County Guangxi. Ecotoxicology and Environmental Safety, 208, 111505. https://doi.org/10.1016/j.ecoenv.2020.111505 Li, H., Yang, L., Tan, J., Wang, W., Hou, S., Li, Y., et al. (2017). Progress on selenium deficiency in geographical environment and its health impacts in China. Current Biotechnology, 7, 381–386. (in Chinese, with English abstract). Li, J., Peng, Q., Liang, D., Liang, S., Chen, J., Sun, H., et al. (2016). Effects of aging on the fraction distribution and bioavailability of selenium in three different soils. Chemosphere, 144, 2351–2359. https://doi.org/10.1016/j.chemosphere.2015.11.011 Li, Z., Liang, D., Peng, Q., Cui, Z., Huang, J., & Lin, Z. (2017). Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, 69–79. https://doi.org/10.1016/j.geoderma.2017.02.019 Li, Z., Man, N., Wang, S., Liang, D., & Liu, J. (2015). Selenite adsorption and desorption in main Chinese soils with their characteristics and physicochemical properties. Journal of Soils and Sediments, 15, 1150–1158. https://doi.org/10.1007/s11368-015-1085-7 Liu, Q., Wang, D. J., Jiang, X. J., & Cao, Z. H. (2004). Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza sativa). Environmental Geochemistry and Health, 26, 325–330. https://doi.org/10.1023/B:EGAH.0000039597.75201.57 Liu, X., Yang, K., Cheng, H., Tang, S., Guo, F., Liu, F., et al. (2020). Control factors of selenium content and bioavailability of rice root soil in shale and carbonate rock areas, Luzhou City. Sichuan Province. Geological Bulletin of China, 39(12), 1919–1931. (in Chinese, with English abstract). Liu, X., Yang, K., Guo, F., Tang, S., Liu, Y., Zhang, L., et al. (2021). Effects and mechanism of igneous rock on selenium in the tropical soil-rice system in Hainan Province. South China. China Geology, 4, 1–11. https://doi.org/10.1016/S2096-5192(22)00081-7 Liu, Y., Li, Y., Jiang, Y., Li, H., Wang, W., & Yang, L. (2013). Effects of soil trace elements on longevity population in China. Biological Trace Element Research, 153, 119–126. https://doi.org/10.1007/s12011-013-9673-0 Lyu, C., Chen, J., Li, L., Zhao, Z., & Liu, X. (2022). Characteristics of Se in water-soil-plant system and threshold of soil Se in seleniferous areas in Enshi China. Science of The Total Environment, 827, 154372. https://doi.org/10.1016/j.scitotenv.2022.154372 MLR C. (2016a) Specification of land quality geochemical assessment. DZ/T 0295–2016a, (in Chinese) MLR C. (2016b) Analysis of methods for regional geochemical sample. DZ/T 0279–2016b. Geological Publishing House, Beijing, China, (in Chinese) Morlon, H., Fortin, C., Adam, C., & Garnier-Laplace, J. (2006). Selenite transport and its inhibition in the unicellular green alga Chlamydomonas reinhardtii. Environmental Toxicology & Chemistry, 25, 1408–1417. https://doi.org/10.1897/2512039.1 Muller, J., Abdelouas, A., Ribet, S., & Grambow, B. (2012). Sorption of selenite in a multi-component system using the “dialysis membrane” method. Applied Geochemistry, 27, 2524–2532. https://doi.org/10.1016/j.apgeochem.2012.07.023 Natasha, M. S., Niazi, N. K., Khalid, S., Murtaza, B., Bibi, I., & Rashid, M. I. (2018). A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 234, 915–934. https://doi.org/10.1016/j.envpol.2017.12.019 Navarro-Alarcon, M., & Cabrera-Vique, C. (2008). Selenium in food and the human body: A review. Science of the Total Environment, 400, 115–141. https://doi.org/10.1016/j.scitotenv.2008.06.024 Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27, 286–306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x Qin, H., Zhu, J., Liang, L., Wang, M., & Su, H. (2013). The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas. China. Environment International, 52, 66–74. https://doi.org/10.1016/j.envint.2012.12.003 Ranney, R. W. (1969). An organic carbon-organic matter conversion equation for pennsylvania surface soils. Soil Science Society of America Journal, 33, 809. https://doi.org/10.2136/sssaj1969.03615995003300050049x Rayman, M. P. (2000). The importance of selenium to human health. Lancet, 356(9225), 233–241. https://doi.org/10.1016/S0140-6736(00)02490-9 Rayman, M. P. (2012). Selenium and human health. The Lancet, 379, 1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9 Reimann, C., & de Caritat, P. (2017). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 578, 633–648. https://doi.org/10.1016/j.scitotenv.2016.11.010 Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., et al. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 88, 302–318. https://doi.org/10.1016/j.apgeochem.2017.01.021 Reimann, C., & Filzmoser, P. (2000). Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39(9), 1001–1014. https://doi.org/10.1007/s002549900081 Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., et al. (2012). The concept of compositional data analysis in practice—Total major element concentrations in agricultural and grazing land soils of Europe. Science of the Total Environment, 426, 196–210. https://doi.org/10.1016/j.scitotenv.2012.02.032 Reimann, C., Filzmoser, P., Hron, K., Kynčlová, P., & Garrett, R. G. (2017). A new method for correlation analysis of compositional (environmental) data—A worked example. Science of the Total Environment, 607–608, 965–971. https://doi.org/10.1016/j.scitotenv.2017.06.063 Séby, F., Potin-Gautier, M., Giffaut, E., Borge, G., & Donard, O. F. X. (2001). A critical review of thermodynamic data for selenium species at 25°C. Chemical Geology, 171, 173–194. https://doi.org/10.1016/S0009-2541(00)00246-1 Shaheen, S. M., Frohne, T., White, J. R., DeLaune, R. D., & Rinklebe, J. (2017). Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. Journal of Environmental Management, 186, 131–140. https://doi.org/10.1016/j.jenvman.2016.05.032 Sharma, S., Bansal, A., Dogra, R., Dhillon, S. K., & Dhillon, K. S. (2011). Effect of organic amendments on uptake of selenium and biochemical grain composition of wheat and rape grown on seleniferous soils in Northwestern India. Journal of Plant Nutrition and Soil Science, 174, 269–275. https://doi.org/10.1002/jpln.200900265 Sun, G., Liu, X., Williams, P. N., & Zhu, Y. (2010). Distribution and translocation of selenium from soil to grain and its speciation in paddy rice (Oryza sativa L.). Environmental Science & Technology, 44, 6706–6711. https://doi.org/10.1021/es101843x Tan, J., Zhu, W., Wang, W., Li, R., Hou, S., Wang, D., et al. (2002). Selenium in soil and endemic diseases in China. The Science of the Total Environment, 284, 227–235. https://doi.org/10.1016/S0048-9697(01)00889-0 Tan, J., Zhu, W., Wang, W., Li, R., Hou, S., Wang, D., & Yang, L. (2002). Selenium in soil and endemic diseases in China. Science of The Total Environment, 284(1–3), 227–235. https://doi.org/10.1016/S0048-9697(01)00889-0 Wang, D., Zhou, F., Yang, W., Peng, Q., Man, N., & Liang, D. (2017). Selenate redistribution during aging in different Chinese soils and the dominant influential factors. Chemosphere, 182, 284–292. https://doi.org/10.1016/j.chemosphere.2017.05.014 Wang, S., Liang, D., et al. (2011). Relationship between soil physico-chemical properties and selenium species based on path analysis. Acta Pedologica Sinica, 48(4), 823–830. (in Chinese, with English abstract). Wang, Y., Yang, Y., Shi, X., Mao, S., Shi, N., & Hui, X. (2016). The spatial distribution pattern of human immunodeficiency virus/acquired immune deficiency syndrome in China. Geospatial Health. https://doi.org/10.4081/gh.2016.414 Wang, Z., Gao, Y., Fuge, R., Poon, C. E., Li, X., Fuge, R., et al. (2001). Biogeochemical cycling of selenium in Chinese environments. Applied Geochemistry, 16, 1345–1351. https://doi.org/10.1016/S0883-2927(01)00046-4 Wang, Z., Huang, W., & Pang, F. (2022). Selenium in soil–plant-microbe: A review. Bulletin of Environmental Contamination and Toxicology, 108, 167–181. https://doi.org/10.1007/s00128-021-03386-2 Wen, Y., Li, W., Yang, Z., Zhang, Q., & Ji, J. (2020). Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region Southwestern China. Chemosphere, 245, 125620. https://doi.org/10.1016/j.chemosphere.2019.125620 White, P. J., Broadley, M. R., & Gregory, P. J. (2012). Managing the nutrition of plants and people. Applied and Environmental Soil Science, 2012, 1–13. https://doi.org/10.1155/2012/104826 WHO and FAO. (2004). Vitamin and mineral requirements in human nutrition. World Health Organization and Food and Agriculture Organization of the United Nations. Xu, H., Croot, P., & Zhang, C. (2021). Discovering hidden spatial patterns and their associations with controlling factors for potentially toxic elements in topsoil using hot spot analysis and K-means clustering analysis. Environment International, 151, 106456. https://doi.org/10.1016/j.envint.2021.106456 Xu, H., Croot, P., & Zhang, C. (2022). Exploration of the spatially varying relationships between lead and aluminium concentrations in the topsoil of northern half of Ireland using geographically weighted pearson correlation coefficient. Geoderma, 409, 115640. https://doi.org/10.1016/j.geoderma.2021.115640 Xu, H., Demetriades, A., Reimann, C., Jiménez, J. J., Filser, J., & Zhang, C. (2019). Identification of the co-existence of low total organic carbon contents and low pH values in agricultural soil in north-central Europe using hot spot analysis based on GEMAS project data. Science of the Total Environment, 678, 94–104. https://doi.org/10.1016/j.scitotenv.2019.04.382 Xu, W. F., Chen, Q. X., & Shi, W. M. (2010). Effects of nitrate supply site on selenite uptake by rice roots. Journal of Agricultural and Food Chemistry, 58, 11075–11080. https://doi.org/10.1021/jf102263e Yang, F., Xu, Y., & Cui, Y. (2017). Variation of soil organic matter content in croplands of China over the last three decades. Acta Pedol Sin, 54, 1047–1056. https://doi.org/10.11766/trxb201703180633. (In Chinese with English abstract). Yang, Q., Yang, Z., Filippelli, G. M., Ji, J., Wenbing Ji, X., Liu, L. W., Tao, Y., Tiansheng, W., Zhuo, X., & Zhang, Q. (2021). Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China. Chemical Geology, 567, 120081. https://doi.org/10.1016/j.chemgeo.2021.120081 Yang, Q., Yang, Z., Zhang, Q., Liu, X., Zhuo, X., Wu, T., et al. (2021). Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi China. Science China Earth Sciences, 64, 1126–1139. https://doi.org/10.1007/s11430-020-9763-0 Yang, Z. (2016). Protection of national ecological environment, security and sustainable use of resources–interpretation of Guangxi land quality geochemical assessment report. Southern Land Resources, 2017, 3. (in Chinese). Yang, Z., Yu, T., Hou, Q., Xia, X., Feng, H., Huang, C., et al. (2014). Geochemical evaluation of land quality in China and its applications. Journal of Geochemical Exploration, 139, 122–135. https://doi.org/10.1016/j.gexplo.2013.07.014 Yoon, I., Kim, K., Bang, S., & Kim, M. G. (2011). Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion. Applied Catalysis B: Environmental, 104, 185–192. https://doi.org/10.1016/j.apcatb.2011.02.014 Yuan, Y., Cave, M., Xu, H., & Zhang, C. (2020). Exploration of spatially varying relationships between Pb and Al in urban soils of London at the regional scale using geographically weighted regression (GWR). Journal of Hazardous Materials, 393, 122377. https://doi.org/10.1016/j.jhazmat.2020.122377 Zhang, C., Fay, D., McGrath, D., Grennan, E., & Carton, O. T. (2008a). Statistical analyses of geochemical variables in soils of Ireland. Geoderma, 146, 378–390. https://doi.org/10.1016/j.geoderma.2008.06.013 Zhang, C., Luo, L., Xu, W., & Ledwith, V. (2008b). Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway Ireland. Science of the Total Environment, 398, 212–221. https://doi.org/10.1016/j.scitotenv.2008.03.011 Zhang, C., Manheim, F. T., Hinde, J., & Grossman, J. N. (2005). Statistical characterization of a large geochemical database and effect of sample size. Applied Geochemistry, 20, 1857–1874. https://doi.org/10.1016/j.apgeochem.2005.06.006