Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xác định đa thức trong điều kiện bi không tách biệt qua một trị riêng
Tóm tắt
Chúng tôi xem xét một bài toán quang phổ cho phương trình vi phân thường trên một khoảng hữu hạn. Các điều kiện bi chứa các hàm và một đa thức trong tham số quang phổ. Chúng tôi tìm ra một tiêu chí cho việc tái cấu trúc duy nhất đa thức này thông qua một trị riêng bội. Các ví dụ liên quan được trình bày.
Từ khóa
#điều kiện bi không tách biệt #phương trình vi phân thường #trị riêng #đa thứcTài liệu tham khảo
Shkalikov, A.A., Boundary Value Problems for Ordinary Differential Equations with a Parameter in the Boundary Conditions, Tr. Semin. im. I.G. Petrovskogo, 1983, no. 9, pp. 190–229.
Kapustin, N.Yu. and Moiseev, E.I., On Spectral Problems with Spectral Parameter in the Boundary Condition, Differ. Uravn., 1997, vol. 33, no. 1, pp. 115–119.
Akhtyamov, A.M., Calculation of Coefficients of Expansions in Derived Chains of a Spectral Problem, Mat. Zametki, 1992, vol. 51, no. 6, pp. 137–139.
Akhtyamov, A.M., On the Coefficients of Expansions in Eigenfunctions of Boundary Value Problems with a Parameter in the Boundary Conditions, Mat. Zametki, 2004, vol. 75, no. 4, pp. 493–506.
Mirzoev, S.S., Aliev, A.R., and Rustamova, L.A., On the Boundary Value Problem with an Operator in Boundary Conditions for an Operator-Differential Equation of Second Order with Discontinuous Coefficients, Zh. Mat. Fiz. Anal. Geom., 2013, vol. 9, no. 2, pp. 207–226.
Nabiev, I.M. and Shukurov, A.Sh., Properties of the Spectrum and Uniqueness of the Reconstruction of a Sturm–Liouville Operator with a Spectral Parameter in the Boundary Condition, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, vol. 40, special issue, pp. 332–341.
Mamedov, Kh.R. and Cetinkaya, F., Inverse Problem for a Class of Sturm–Liouville Operator with Spectral Parameter in Boundary Condition, Bound. Value Probl., 2013, Article ID 183, 16 p., electronic only. http://link.springer.com/journal/volumesAndIssues/13661
Mamedov, Kh.R., On a Boundary Value Problem with Spectral Parameter in Boundary Conditions, Sibirsk. Mat. Zh., 1999, vol. 40, no. 2, pp. 281–290.
Panakhov, E.S., Koyunbakan, H., and Unal Ic., Reconstruction Formula for the Potential Function of Sturm–Liouville Problem with Eigenparameter Boundary Condition, Inverse Probl. Sci. Eng., 2010, vol. 18, no. 1, pp. 173–180.
Chugunova, M.V., Inverse Spectral Problem for the Sturm–Liouville Operator with Eigenvalue Parameter Dependent Boundary Conditions, Oper. Theory Adv. Appl., 2001, vol. 123, pp. 187–194.
Van Der Mei, K. and Pivovarchik, V.N., An Inverse Sturm–Liouville Problem with Boundary Conditions Depending on the Spectral Parameter, Funktsional. Anal. i Prilozhen., 2002, vol. 36, no. 4, pp. 74–77.
Sadovnichii, V.A., Sultanaev, Ya.T., and Akhtyamov, A.M., An Inverse Problem for an Operator Pencil with Nonseparated Boundary Conditions, Dokl. Akad. Nauk, 2009, vol. 425, no. 1, pp. 31–33.
Freiling, G. and Yurko, V., Inverse Problems for Sturm–Liouville Equations with Boundary Conditions Polynomially Dependent on the Spectral Parameter, Inverse Problems, 2010, vol. 26, 055003.
Akhtyamov, A.M., On the Determination of a Boundary Condition from a Finite Set of Eigenvalues, Differ. Uravn., 1999, vol. 35, no. 8, pp. 1127–1128.
Akhtyamov, A.M. and Kumushbaev, R.R., Identification of a Polynomial in Nonseparated Boundary Conditions, Differ. Uravn., 2012, vol. 48, no. 11, pp. 1549–1552.
Akhtyamov, A.M., How to Change a Boundary Condition in a Problem to Make the Problem Have a Prescribed Spectrum, Differ. Uravn., 2014, vol. 50, no. 4, pp. 549–550.
Naimark, M.A., Lineinye differentsial’nye operatory (Linear Differential Operators), Moscow: Nauka, 1969.
Kamke, E.W.H., Differentialgleichungen, Leipzig, 1959. Translated under the title Spravochnik po obyknovennym differentsial’nym uravneniyam, Moscow, 1981.
