Identification of the decumbenone biosynthetic gene cluster in Penicillium decumbens and the importance for production of calbistrin
Tóm tắt
Từ khóa
Tài liệu tham khảo
van den Berg M, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJM, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol. 2008;26(10):1161–8.
Pickens LB, Tang Y, Chooi Y-H. Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng. 2011;2:211–36.
Nielsen JC, Nielsen J. Development of fungal cell factories for the production of secondary metabolites: linking genomics and metabolism. Synth Syst Biotechnol. 2017;2(1):5–12.
Jackson M, Karwowski JP, Humphrey PE, Kohl WL, Barlow GJ, Tanaka SK. Calbistrins, novel antifungal agents produced by Penicillium restrictum. I. Production, taxonomy of the producing organism and biological activity. J Antibiot (Tokyo). 1993;46(1):34–8.
Bertizal FK, Dombrowski AW, Helms GL, Horn WS, Jones ETT, Koupal L, et al. JPH08134059 (A)—Cholesterol lowering agent. 1991.
Bladt TT, Durr C, Knudsen PB, Kildgaard S, Frisvad JC, Gotfredsen CH, et al. Bio-activity and dereplication-based discovery of ophiobolins and other fungal secondary metabolites targeting leukemia cells. Molecules. 2013;18(12):14629–50.
Brill GM, Chen RH, Rasmussen RR, Whittern DN, McAlpine JB. Calbistrins, novel antifungal agents produced by Penicillium restrictum II. Isolation and elucidation of structure. J Antibiot (Tokyo). 1993;46(1):39–47.
Stewart M, Capon RJ, Lacey E, Tennant S, Gill JH. Calbistrin E and two other new metabolites from an Australian isolate of Penicillium striatisporum. J Nat Prod. 2005;68(4):581–4.
Nielsen JC, Grijseels S, Prigent S, Ji B, Dainat J, Nielsen KF, et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat Microbiol. 2017;2:17044.
Fujii Y, Asahara M, Ichinoe M, Nakajima H. Fungal melanin inhibitor and related compounds from Penicillium decumbens. Phytochemistry. 2002;60(7):703–8.
Endo A, Monacolin K. new hypocholesteroleic agent produced by a Monascus species. J Antibiot (Tokyo). 1979;32(8):852–4.
Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980;77(7):3957–61.
Brown BAG, Srnale TC, Pharmaceuticals B, Park B, King TJ, Hasenkamp R, et al. Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. JCS Perkin. 1976;1:1165–8.
Frisvad JC, Filtenborg O. Terverticillate Penicillia: chemotaxonomy and mycotoxin production. Mycologia. 1989;81(6):837–61.
Endo A, Kuroda M, Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogensis produced by Penicillium citrinum. J Antibiot (Tokyo). 1976;29(12):1346–8.
Auclair K, Sutherland A, Kennedy J, Witter DJ, Van Den Heever JP, Hutchinson CR, et al. Lovastatin nonaketide synthase catalyzes an intramolecular diels—alder reaction of a substrate analogue. J Am Chem Soc. 2000;1(12):11519–20.
Horn WS, Bierilo KK, Bills GF, Dombrowski AW, Helms GL, Jones ET, et al. Characterization of the light- and base-mediated instability of calbistrin A. J Nat Prod. 1993;56(10):1779–85.
Petersen LM, Hoeck C, Frisvad JC, Gotfredsen CH, Larsen TO. Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. Molecules. 2014;19(8):10898–921.
Fukuyama K, Hamasaki T, Hatsuda Y, Hamasaki T, Nakagomi T, Fukuyama K, et al. Structure and absolute configuration of versiol, a metabolite from Aspergillus versicolor. J Chem Soc Perkin Trans 2. 1978. https://doi.org/10.1039/P29780000683 .
Kasahara K, Miyamoto T, Fujimoto T, Oguri H, Tokiwano T, Oikawa H, et al. Solanapyrone synthase, a possible Diels–Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. ChemBioChem. 2010;11(9):1245–52.
Kakule TB, Sardar D, Lin Z, Schmidt EW. Two related pyrrolidinedione synthetase loci in Fusarium heterosporum ATCC 74349 produce divergent metabolites. ACS Chem Biol. 2013;8(7):1549–57.
Kato N, Nogawa T, Hirota H, Jang J-H, Takahashi S, Ahn JS, et al. A new enzyme involved in the control of the stereochemistry in the decalin formation during equisetin biosynthesis. Biochem Biophys Res Commun. 2015;460(2):210–5.
Li L, Yu P, Tang M-C, Zou Y, Gao S-S, Hung Y-S, et al. Biochemical characterization of a eukaryotic decalin-forming Diels–Alderase. J Am Chem Soc. 2016;138(49):15837–40.
Campbell CD, Vederas JC. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolymers. 2010;93(9):755–63.
Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygård Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol. 2016;5:754–64.
Yin W, Keller NP. Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol. 2011;49(3):329–39.
Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, et al. Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol. 2009;72:931–46.
Xu W, Chooi YH, Choi JW, Li S, Vederas JC, Da Silva NA, et al. LovG: the thioesterase required for dihydromonacolin L release and lovastatin nonaketide synthase turnover in lovastatin biosynthesis. Angew Chemie Int Ed. 2013;52(25):6472–5.
Auclair K, Kennedy J, Hutchinson CR, Vederas JC. Conversion of cyclic nonaketides to lovastatin and compactin by a lovC deficient mutant of Aspergillus terreus. Bioorganic Med Chem Lett. 2001;11(12):1527–31.
Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science (80-). 1999;284(5418):1368–72.
Xie X, Meehan MJ, Xu W, Dorrestein PC, Tang Y. Acyltransferase mediated polyketide release from a fungal megasynthase. J Am Chem Soc. 2009;131(24):8388–9.
Petersen EI, Valinger G, Solkner B, Stubenrauch G, Schwab H. A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to beta-lactamases and DD-peptidases. J Biotechnol. 2001;89(1):11–25.
Durairaj P, Malla S, Nadarajan SP, Lee P-G, Jung E, Park HH, Kim B-G, Yun H. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb Cell Fact. 2015;14:45.
Bowen CH, Bonin J, Kogler A, Barba-Ostria C, Zhang F. Engineering Escherichia coli for conversion of glucose to medium- chain ω-hydroxy fatty acids and α, ω-dicarboxylic acids. ACS Synth Biol. 2016;5:200–6.
Rojas-Aedo JF, Gil-Durán C, Del-Cid A, Valdés N, Álamos P, Vaca I, García-Rico RO, Levicán G, Tello M, Chávez R. The biosynthetic gene cluster for andrastin A in Penicillium roqueforti. Front Microbiol. 2017;8:813.
Fujiia Y, Asahara M, Ichinoe M, Nakajima H. Fungal melanin inhibitor and related compounds from Penicillium decumbens. Phytochemistry. 2002;60(7):703–8.
Anisimov MM, Chaikina EL, Afiyatullov SS, Zhuravleva OI, Klykov AG, Kraskovskaja NA, Aminin DL. Decumbenones A–C from marine fungus Aspergillus sulphureus as stimulators of the initial stages of development of agricultural plants. Agric Sci. 2012;3(8):1019–22.
Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O’Connell RJ, Schulze-Lefert P. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell. 2016;165(2):464–74.
Grijseels S, Nielsen JC, Nielsen J, Larsen TO, Frisvad JC, Fog Nielsen K, et al. Physiological characterization of secondary metabolite producing Penicillium cell factories. Fungal Biol Biotechnol. 2017;4(8):1–12.
Kovalchuk A, Weber SS, Nijland JG, Bovenberg RAL, Driessen AJM. Fungal ABC transporter deletion and localization analysis. In: Bolton M, Thomma B, editors. Plant fungal pathogens methods in molecular biology, vol. 835. New York: Humana Press; 2012. p. 1–16.
de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 2017;18(1):28.
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43(D1):D222–6.
Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci. 2003;100(26):15670–5.
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242–5.
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10.
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Sigl C, Handler M, Sprenger G, Kurnsteiner H, Zadra I. A novel homologous dominant selection marker for genetic transformation of Penicillium chrysogenum: overexpression of squalene epoxidase-encoding ergA. J Biotechnol. 2010;150(3):307–11.
Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. A modular cloning system for standardized assembly of multigene constructs. PLoS One. 2011;6(2):e16765.
Chari R, Yeo NC, Chavez A, Church GM. SgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol. 2017;6(5):902–4.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.