Identification of the Au/ZnO interface as the specific active site for the selective oxidation of the secondary alcohol group in glycerol
Tài liệu tham khảo
Wang, 2016, Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation, J. Am. Chem. Soc., 138, 6298, 10.1021/jacs.6b02762
Li, 2017, Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction, Angew. Chem. Int. Ed., 56, 10761, 10.1002/anie.201705002
Fan, 2017, Pt–WOx on monoclinic or tetrahedral ZrO2: crystal phase effect of zirconia on glycerol hydrogenolysis to 1, 3-propanediol, Appl. Catal. B Environ., 217, 331, 10.1016/j.apcatb.2017.06.011
Bienholz, 2010, Prevention of catalyst deactivation in the hydrogenolysis of glycerol by Ga2O3-modified copper/zinc oxide catalysts, J. Phys. Chem. C, 115, 999, 10.1021/jp104925k
Fang, 2017, Regioselective hydrogenolysis of aryl ether C-O bonds by tungsten carbides with controlled phase compositions, Chem. Commun., 53, 10295, 10.1039/C7CC05487D
Pagliaro, 2007, From glycerol to value-added products, Angew. Chem. Int. Ed., 46, 4434, 10.1002/anie.200604694
Wang, 2013, Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts, ACS Catal., 3, 2112, 10.1021/cs400486z
Li, 2011, Carbon nanotube-supported RuFe bimetallic nanoparticles as efficient and robust catalysts for aqueous-phase selective hydrogenolysis of glycerol to glycols, ACS Catal., 1, 1521, 10.1021/cs200386q
Brett, 2011, Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions, Angew. Chem., 123, 10318, 10.1002/ange.201101772
Garcia, 1995, Chemoselective catalytic oxidation of glycerol with air on platinum metals, Appl. Catal. A Gen., 127, 165, 10.1016/0926-860X(95)00048-8
Sankar, 2009, Oxidation of glycerol to glycolate by using supported gold and palladium nanoparticles, ChemSusChem, 2, 1145, 10.1002/cssc.200900133
Shen, 2010, Efficient synthesis of lactic acid by aerobic oxidation of glycerol on Au–Pt/TiO2 catalysts, Chem. Eur. J., 16, 7368, 10.1002/chem.201000740
Chen, 2015, Platinum nanoparticles supported on N-doped carbon nanotubes for the selective oxidation of glycerol to glyceric acid in a base-free aqueous solution, RSC Adv., 5, 31566, 10.1039/C5RA02112J
Dimitratos, 2012, Selective liquid phase oxidation with supported metal nanoparticles, Chem. Sci., 3, 20, 10.1039/C1SC00524C
Porta, 2004, Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity, J. Catal., 224, 397, 10.1016/j.jcat.2004.03.009
Gupta, 2017, Metal-free oxidation of glycerol over nitrogen-containing carbon nanotubes, ChemSusChem, 10, 3030, 10.1002/cssc.201700940
Lari, 2015, Gas-phase oxidation of glycerol to dihydroxyacetone over tailored iron zeolites, ACS Catal., 5, 1453, 10.1021/cs5019056
Wang, 2012, Base-free selective oxidation of glycerol with 3% H2O2 catalyzed by sulphonato-salen-chromium (III) intercalated LDH, Catal. Commun., 28, 73, 10.1016/j.catcom.2012.08.014
Kondrat, 2014, Base-free oxidation of glycerol using titania-supported trimetallic Au–Pd–Pt nanoparticles, ChemSusChem, 7, 1326, 10.1002/cssc.201300834
Evans, 2016, The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site, Faraday Discuss., 188, 427, 10.1039/C5FD00187K
Shen, 2015, Base-free aerobic oxidation of glycerol on TiO2-supported bimetallic Au–Pt catalysts, J. Energy Chem., 24, 669, 10.1016/j.jechem.2015.08.015
Ning, 2016, Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone, J. Catal., 335, 95, 10.1016/j.jcat.2015.12.020
Hirasawa, 2013, Performance, structure and mechanism of Pd–Ag alloy catalyst for selective oxidation of glycerol to dihydroxyacetone, J. Catal., 300, 205, 10.1016/j.jcat.2013.01.014
Carrettin, 2003, Oxidation of glycerol using supported Pt, Pd and Au catalysts, Phys. Chem. Chem. Phys., 5, 1329, 10.1039/b212047j
Carrettin, 2004, Oxidation of glycerol using supported gold catalysts, Top. Catal., 27, 131, 10.1023/B:TOCA.0000013547.35106.0d
Carrettin, 2002, Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide, Chem. Commun., 696–697
Yuan, 2015, Acid-base property of the supporting material controls the selectivity of Au catalyst for glycerol oxidation in base-free water, Chin. J. Catal., 36, 1543, 10.1016/S1872-2067(15)60936-6
Villa, 2015, Glycerol oxidation using gold-containing catalysts, Acc. Chem. Res., 48, 1403, 10.1021/ar500426g
Schünemann, 2015, Mesoporous silica supported Au and AuCu nanoparticles for surface plasmon driven glycerol oxidation, Chem. Mater., 27, 7743, 10.1021/acs.chemmater.5b03520
Liu, 2014, Specific selectivity of Au-catalyzed oxidation of glycerol and other C3-polyols in water without the presence of a base, ACS Catal., 4, 2226, 10.1021/cs5005568
D’Agostino, 2017, Increased affinity of small gold particles for glycerol oxidation over Au/TiO2 probed by NMR relaxation methods, ACS Catal., 7, 4235, 10.1021/acscatal.7b01255
Liu, 2016, Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination, Catal. Sci. Technol., 6, 5144, 10.1039/C6CY00090H
Wang, 2013, Carbon-supported gold nanocatalysts: shape effect in the selective glycerol oxidation, ChemCatChem, 5, 2717, 10.1002/cctc.201200535
Qiao, 2015, Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature, Chin. J. Catal., 36, 1505, 10.1016/S1872-2067(15)60889-0
Brown, 2011, Oxidation of Au by surface OH: nucleation and electronic structure of gold on hydroxylated MgO (001), J. Am. Chem. Soc., 133, 10668, 10.1021/ja204798z
Liu, 2015, Defect-mediated gold substitution doping in ZnO mesocrystals and catalysis in CO oxidation, ACS Catal., 6, 115, 10.1021/acscatal.5b02093
Shekhar, 2012, Size and support effects for the water–gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2, J. Am. Chem. Soc., 134, 4700, 10.1021/ja210083d
Van Hardeveld, 1969, The statistics of surface atoms and surface sites on metal crystals, Surf. Sci., 15, 189, 10.1016/0039-6028(69)90148-4
Wang, 2016, Solar-driven H2O2 generation from H2O and O2 using earth-abundant mixed-metal oxide@ carbon nitride photocatalysts, ChemSusChem, 9, 2470, 10.1002/cssc.201600705
Cao, 2016, Catal. Sci. Technol., 6, 107, 10.1039/C5CY00732A
Prati, 2009, From renewable to fine chemicals through selective oxidation: the case of glycerol, Top. Catal., 52, 288, 10.1007/s11244-008-9165-1
Ketchie, 2007, Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol, J. Catal., 250, 94, 10.1016/j.jcat.2007.06.001
Dodekatos, 2016, Plasmonic Au/TiO2 nanostructures for glycerol oxidation, Catal. Sci. Technol., 6, 7307, 10.1039/C6CY01192F
Liu, 2012, J. Am. Chem. Soc., 134, 10251, 10.1021/ja3033235
Xu, 2017, TiO2–x-modified Ni nanocatalyst with tunable metal-support interaction for water-gas shift reaction, ACS Catal., 7, 7600, 10.1021/acscatal.7b01951
Zhao, 2016, Strong metal–support interactions enhance the pairwise selectivity of parahydrogen addition over Ir/TiO2, ACS Catal., 6, 974, 10.1021/acscatal.5b02632
Yi, 2009, Morphology effects of nanocrystalline CeO2 on the preferential CO oxidation in H2-rich gas over Au/CeO2 catalyst, Chem. Phys. Lett., 479, 128, 10.1016/j.cplett.2009.08.011
Jiying, 2012, Analysis of the Active Au Species on Au/α-Fe2O3 Catalyst, Rare Met. Mater. Eng., 41, 377, 10.1016/S1875-5372(12)60031-9
Wu, 2017, Probing properties of the interfacial perimeter sites in TiOx/Au/SiO2 with 2-propanol decomposition, Appl. Catal. A Gen., 548, 150, 10.1016/j.apcata.2017.06.027
Zheng, 2016, Surface composition control of the binary Au–Ag catalyst for enhanced oxidant-free dehydrogenation, ACS Catal., 6, 6662, 10.1021/acscatal.6b01348
Conte, 2012, Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism, Phys. Chem. Chem. Phys., 14, 16279, 10.1039/c2cp43363j
Sacaliuc, 2007, Propene epoxidation over Au/Ti-SBA-15 catalysts, J. Catal., 248, 235, 10.1016/j.jcat.2007.03.014
Gogurla, 2014, Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices, Sci. Rep., 4, 6483, 10.1038/srep06483
Annamalai, 2013, Green, synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta, L. leaf extract, Colloids Surf. B Biointerf., 108, 60, 10.1016/j.colsurfb.2013.02.012
Lim, 2011, Pt, nanocrystal evolution in the presence of Au(III)-salts at room temperature: spontaneous formation of AuPt heterodimers, J. Mater. Chem., 21, 11518, 10.1039/c1jm10313j
Wang, 2016, Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst, Appl. Catal. B Environ., 192, 8, 10.1016/j.apcatb.2016.03.040
Liu, 2015, Defect-mediated gold substitution doping in ZnO mesocrystals and catalysis in CO oxidation, ACS Catal., 6, 115, 10.1021/acscatal.5b02093
Bailie, 2001, Hydrogenation of but-2-enal over supported Au/ZnO catalysts, Phys. Chem. Chem. Phys., 3, 4113, 10.1039/b103880j
Luo, 2017, Insight into the chemical adsorption properties of CO molecules supported on Au or Cu and hybridized Au–CuO nanoparticles, Nanoscale, 9, 15033, 10.1039/C7NR06018A
Rogers, 2015, Tailoring gold nanoparticle characteristics and the impact on aqueous-phase oxidation of glycerol, ACS Catal., 5, 4377, 10.1021/acscatal.5b00754
Williams, 2010, Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water−gas shift catalysis, J. Am. Chem. Soc., 132, 14018, 10.1021/ja1064262
Carter, 2017, Activation and deactivation of gold/ceria–zirconia in the low-temperature water-gas shift reaction, Angew. Chem. Int. Ed., 56, 16037, 10.1002/anie.201709708
Duan, 2016, Size controllable redispersion of sintered Au nanoparticles by using iodohydrocarbon and its implications, Chem. Sci., 7, 3181, 10.1039/C5SC04283F
Copeland, 2013, Surface interactions of glycerol with acidic and basic metal oxides, J. Phys. Chem. C, 117, 21413, 10.1021/jp4078695
Hong, 2017, Fabrication of supported Pd–Ir/Al2O3 bimetallic catalysts for 2-ethylanthraquinone hydrogenation, AIChE J., 63, 3955, 10.1002/aic.15748
Du, 2017, The role of various oxygen species in Mn-based layered double hydroxide catalysts in selective alcohol oxidation, Catal. Sci. Technol., 7, 4361, 10.1039/C7CY00918F
Nie, 2013, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on supported Ru catalysts, J. Catal., 301, 83, 10.1016/j.jcat.2013.01.007
Rankin, 2012, Trends in selective hydrogen peroxide production on transition metal surfaces from first principles, ACS Catal., 2, 2664, 10.1021/cs3003337
Zope, 2010, Reactivity of the gold/water interface during selective oxidation catalysis, Science, 330, 74, 10.1126/science.1195055
Ojeda, 2009, Catalytic epoxidation of propene with H2O–O2 reactants on Au/TiO2, Chem. Commun., 3, 352, 10.1039/B813589D
Chun-Ran, 2011, Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: a hydroperoxyl- mediated pathway, Nano Res., 4, 131, 10.1007/s12274-010-0083-8
Chang, 2013, A water-promoted mechanism of alcohol oxidation on a Au (111) surface: understanding the catalytic behavior of bulk gold, ACS Catal., 3, 1693, 10.1021/cs400344r
Ojeda, 2012, Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters, J. Catal., 285, 92, 10.1016/j.jcat.2011.09.015
Yang, 2008, Aerobic oxidation of alcohols over Au/TiO2: An insight on the promotion effect of water on the catalytic activity of Au/TiO2, Catal. Commun., 9, 2278, 10.1016/j.catcom.2008.05.021
Sun, 2017, Selective hydrogenolysis of glycerol to propylene glycol on supported Pd catalysts: promoting effects of ZnO and mechanistic assessment of active PdZn alloy surfaces, ACS Catal., 7, 4265, 10.1021/acscatal.7b00995
Deng, 2013, Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt–SnOx/Al2O3 catalysts, Green Chem., 15, 116, 10.1039/C2GC36088H
Wang, 2018, Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation, ACS Catal., 8, 3104, 10.1021/acscatal.7b03655
Nie, 2014, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts, J. Catal., 316, 57, 10.1016/j.jcat.2014.05.003