Identification of possible Ser/Thr/Tyr phosphorylation sites in the fungal histidine kinase CaNik1p by peptide array technique

Mohammed El-Mowafy1, Ursula Bilitewski1
1Compound Profiling und Screening, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany

Tài liệu tham khảo

Nagahashi, 1998, Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans, Microbiology, 2, 425, 10.1099/00221287-144-2-425 Srikantha, 1998, The two-component hybrid kinase regulator CaNIK1 of Candida albicans, Microbiology, 144, 2715, 10.1099/00221287-144-10-2715 Alex, 1998, COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans, Proc. Natl. Acad. Sci. U.S.A., 95, 7069, 10.1073/pnas.95.12.7069 Cheng, 2014, Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information, Proc. Natl. Acad. Sci. U.S.A., 111, 563, 10.1073/pnas.1323734111 Yamada-Okabe, 1999, Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans, J. Bacteriol., 181, 7243, 10.1128/JB.181.23.7243-7247.1999 Catlett, 2003, Whole-genome analysis of two-component signal transduction genes in fungal pathogens, Eukaryot. Cell, 2, 1151, 10.1128/EC.2.6.1151-1161.2003 Nemecek, 2006, Global control of dimorphism and virulence in fungi, Science, 312, 583, 10.1126/science.1124105 Wesolowski, 2010 Buschart, 2012, A novel functional assay for fungal histidine kinases group III reveals the role of HAMP domains for fungicide sensitivity, J. Biotechnol., 157, 268, 10.1016/j.jbiotec.2011.09.017 El-Mowafy, 2013, Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S. cerevisiae transformants, BMC Microbiol., 13 Posas, 1996, Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor, Cell, 86, 865, 10.1016/S0092-8674(00)80162-2 Yoshimi, 2005, Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi, Eukaryot. Cell, 4, 1820, 10.1128/EC.4.11.1820-1828.2005 El-Mowafy, 2013 Yan, 1998, Protein phosphorylation: technologies for the identification of phosphoamino acids, J. Chromatogr. A, 29, 23, 10.1016/S0021-9673(98)00115-0 Van der Geer, 1994, Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates, Electrophoresis, 15, 544, 10.1002/elps.1150150173 Ellis, 1991, Use of recombinant baculoviruses and 1H nuclear magnetic resonance to study tyrosine phosphorylation by a soluble insulin receptor protein-tyrosine kinase, Methods Enzymol., 200, 660, 10.1016/0076-6879(91)00178-Y McLachlin, 2001, Analysis of phosphorylated proteins and peptides by mass spectrometry, Curr. Opin. Chem. Biol., 5, 591, 10.1016/S1367-5931(00)00250-7 Chandramouli, 2009, Proteomics: challenges, techniques and possibilities to overcome biological sample complexity, Hum. Genomics Proteomics, 2009, 10.4061/2009/239204 Kearney, 2003, Bioinformatics meets proteomics–bridging the gap between mass spectrometry data analysis and cell biology, J. Bioinform. Comput. Biol., 1, 183, 10.1142/S021972000300023X Listgarten, 2005, Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry, Mol. Cell. Proteomics, 4, 419, 10.1074/mcp.R500005-MCP200 Tegge, 1998, Analysis of protein kinase substrate specificity by the use of peptide libraries on cellulose paper (SPOT-method), Methods Mol. Biol., 87, 99 Smith, 2011, Discovery of cellular substrates for protein kinase A using a peptide array screening protocol, Biochem. J., 438, 103, 10.1042/BJ20110720 Parikh, 2009, Comparison of peptide array substrate phosphorylation of c-Raf and mitogen activated protein kinase kinase kinase 8, PLoS One, 4, 10.1371/journal.pone.0006440 Ubersax, 2007, Mechanisms of specificity in protein phosphorylation, Nat. Rev. Mol. Cell Biol., 8, 530, 10.1038/nrm2203 Songyang, 1996, A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1, Mol. Cell. Biol., 16, 6486, 10.1128/MCB.16.11.6486 Knighton, 1991, Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase, Science, 253, 407, 10.1126/science.1862342 Dephoure, 2013, Mapping and analysis of phosphorylation sites: a quick guide for cell biologists, Mol. Biol. Cell, 24, 535, 10.1091/mbc.e12-09-0677 Jr, 2011, Mass spectrometry detection of histidine phosphorylation on NM23-H1, J. Proteome Res., 10, 751, 10.1021/pr100905m Himmel, 2010, Detection and identification of protein-phosphorylation sites in histidines through HNP correlation patterns, Angew. Chem. Int. Ed. Engl., 49, 8971, 10.1002/anie.201003965 Lasker, 1999, Protein histidine phosphorylation: increased stability of thiophosphohistidine, Protein Sci., 8, 2177, 10.1110/ps.8.10.2177 Jers, 2011, Bacillus subtilis two-component system sensory kinase DegS is regulated by serine phosphorylation in its input domain, PLoS One, 6, 10.1371/journal.pone.0014653 Oehme, 2001, Osmotic stress-dependent serine phosphorylation of the histidine kinase homologue DokA, BMC Biochem., 2, 10.1186/1471-2091-2-2