Identification of possible Ser/Thr/Tyr phosphorylation sites in the fungal histidine kinase CaNik1p by peptide array technique
Tài liệu tham khảo
Nagahashi, 1998, Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans, Microbiology, 2, 425, 10.1099/00221287-144-2-425
Srikantha, 1998, The two-component hybrid kinase regulator CaNIK1 of Candida albicans, Microbiology, 144, 2715, 10.1099/00221287-144-10-2715
Alex, 1998, COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans, Proc. Natl. Acad. Sci. U.S.A., 95, 7069, 10.1073/pnas.95.12.7069
Cheng, 2014, Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information, Proc. Natl. Acad. Sci. U.S.A., 111, 563, 10.1073/pnas.1323734111
Yamada-Okabe, 1999, Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans, J. Bacteriol., 181, 7243, 10.1128/JB.181.23.7243-7247.1999
Catlett, 2003, Whole-genome analysis of two-component signal transduction genes in fungal pathogens, Eukaryot. Cell, 2, 1151, 10.1128/EC.2.6.1151-1161.2003
Nemecek, 2006, Global control of dimorphism and virulence in fungi, Science, 312, 583, 10.1126/science.1124105
Wesolowski, 2010
Buschart, 2012, A novel functional assay for fungal histidine kinases group III reveals the role of HAMP domains for fungicide sensitivity, J. Biotechnol., 157, 268, 10.1016/j.jbiotec.2011.09.017
El-Mowafy, 2013, Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S. cerevisiae transformants, BMC Microbiol., 13
Posas, 1996, Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor, Cell, 86, 865, 10.1016/S0092-8674(00)80162-2
Yoshimi, 2005, Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi, Eukaryot. Cell, 4, 1820, 10.1128/EC.4.11.1820-1828.2005
El-Mowafy, 2013
Yan, 1998, Protein phosphorylation: technologies for the identification of phosphoamino acids, J. Chromatogr. A, 29, 23, 10.1016/S0021-9673(98)00115-0
Van der Geer, 1994, Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates, Electrophoresis, 15, 544, 10.1002/elps.1150150173
Ellis, 1991, Use of recombinant baculoviruses and 1H nuclear magnetic resonance to study tyrosine phosphorylation by a soluble insulin receptor protein-tyrosine kinase, Methods Enzymol., 200, 660, 10.1016/0076-6879(91)00178-Y
McLachlin, 2001, Analysis of phosphorylated proteins and peptides by mass spectrometry, Curr. Opin. Chem. Biol., 5, 591, 10.1016/S1367-5931(00)00250-7
Chandramouli, 2009, Proteomics: challenges, techniques and possibilities to overcome biological sample complexity, Hum. Genomics Proteomics, 2009, 10.4061/2009/239204
Kearney, 2003, Bioinformatics meets proteomics–bridging the gap between mass spectrometry data analysis and cell biology, J. Bioinform. Comput. Biol., 1, 183, 10.1142/S021972000300023X
Listgarten, 2005, Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry, Mol. Cell. Proteomics, 4, 419, 10.1074/mcp.R500005-MCP200
Tegge, 1998, Analysis of protein kinase substrate specificity by the use of peptide libraries on cellulose paper (SPOT-method), Methods Mol. Biol., 87, 99
Smith, 2011, Discovery of cellular substrates for protein kinase A using a peptide array screening protocol, Biochem. J., 438, 103, 10.1042/BJ20110720
Parikh, 2009, Comparison of peptide array substrate phosphorylation of c-Raf and mitogen activated protein kinase kinase kinase 8, PLoS One, 4, 10.1371/journal.pone.0006440
Ubersax, 2007, Mechanisms of specificity in protein phosphorylation, Nat. Rev. Mol. Cell Biol., 8, 530, 10.1038/nrm2203
Songyang, 1996, A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1, Mol. Cell. Biol., 16, 6486, 10.1128/MCB.16.11.6486
Knighton, 1991, Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase, Science, 253, 407, 10.1126/science.1862342
Dephoure, 2013, Mapping and analysis of phosphorylation sites: a quick guide for cell biologists, Mol. Biol. Cell, 24, 535, 10.1091/mbc.e12-09-0677
Jr, 2011, Mass spectrometry detection of histidine phosphorylation on NM23-H1, J. Proteome Res., 10, 751, 10.1021/pr100905m
Himmel, 2010, Detection and identification of protein-phosphorylation sites in histidines through HNP correlation patterns, Angew. Chem. Int. Ed. Engl., 49, 8971, 10.1002/anie.201003965
Lasker, 1999, Protein histidine phosphorylation: increased stability of thiophosphohistidine, Protein Sci., 8, 2177, 10.1110/ps.8.10.2177
Jers, 2011, Bacillus subtilis two-component system sensory kinase DegS is regulated by serine phosphorylation in its input domain, PLoS One, 6, 10.1371/journal.pone.0014653
Oehme, 2001, Osmotic stress-dependent serine phosphorylation of the histidine kinase homologue DokA, BMC Biochem., 2, 10.1186/1471-2091-2-2
