Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis

Insect Biochemistry and Molecular Biology - Tập 33 Số 10 - Trang 999-1010 - 2003
Rebecca J. McNall1, Michael J. Adang1,2
1Department of Biochemistry and Molecular Biology, University of Georgia, 413 Biological Sciences Building, 120 Cedar Street, Athens, GA 30602, USA
2Department of Entomology, University of Georgia, 413 Biological Sciences Building, 120 Cedar Street, Athens, GA 30602, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Azuma, 1991, Goblet cell alkaline-phosphatase in silkworm midgut epithelium—its entity and role as an ATPase, J. Exp. Zool., 258, 294, 10.1002/jez.1402580304

Bonfanti, 1992, The molecular architecture of an insect midgut brush border cytoskeleton, Eur. J. Cell Biol., 57, 298

Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3

Capella, 1997, Cytoskeleton removal and characterization of the microvillar membranes isolated from two midgut regions of Spodoptera frugiperda (Lepidoptera), Insect Biochem. Mol. Biol., 27, 793, 10.1016/S0965-1748(97)00061-1

Candas, 2002, Proteolytic cleavage of the developmentally important cadherin BT-R1 in the midgut epithelium of Manduca sexta, Biochemistry, 41, 13717, 10.1021/bi026323k

Candas, 2003, Insect resistance to Bacillus thuringiensis: alterations in the indianmeal moth larval gut proteome, Mol. Cell. Proteomics, 2, 19, 10.1074/mcp.M200069-MCP200

Cioffi, 1983, Isolation of separate apical, lateral and basal plasma membrane from cells of an insect epithelium. A procedure based on tissue organization and ultrastructure, Tissue Cell, 15, 781, 10.1016/0040-8166(83)90050-2

Daniel, 2002, Denaturation of either Manduca sexta aminopeptidase N or Bacillus thuringiensis Cry1A toxins exposes binding epitopes hidden under nondenaturing conditions, Appl. Environ. Microbiol., 68, 2106, 10.1128/AEM.68.5.2106-2112.2002

Dorsch, 2002, Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis, Insect Biochem. Mol. Biol., 32, 1025, 10.1016/S0965-1748(02)00040-1

English, 1989, Delta endotoxin inhibits a phosphatase in midgut epithelial membranes of Heliothis virescens, Insect Biochem., 19, 145, 10.1016/0020-1790(89)90085-1

Garczynski, 1995, Bacillus thuringiensis Cry1Ac delta-endotoxin binding aminopeptidase in the Manduca sexta midgut has a glycosylphosphatidylinositol anchor, Insect. Biochem. Mol. Biol., 25, 409, 10.1016/0965-1748(94)00072-7

Garczynski, 1991, Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis, Appl. Environ. Microbiol., 57, 2816, 10.1128/AEM.57.10.2816-2820.1991

Gill, 2002, Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1, Insect Mol. Biol., 11, 619, 10.1046/j.1365-2583.2002.00373.x

Görg, 1998, 2-D electrophoresis with immobilized pH gradients using IPGphor isoelectric focusing system, Life Sci. News, 1, 4

Hooper, 1992, Identification of a glycosyl-phosphatidylinositol anchor on membrane proteins, 89

Knight, 1994, The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N, Mol. Microbiol., 11, 429, 10.1111/j.1365-2958.1994.tb00324.x

Luo, 1999, Expression of a glycosyl phosphatidylinositol-linked Manduca sexta aminopeptidase N in insect cells, Protein Expression. Purif., 17, 113, 10.1006/prep.1999.1122

Mooseker, 1985, Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border, Ann. Rev. Cell Biol., 1, 209, 10.1146/annurev.cb.01.110185.001233

Nagamatsu, 1999, The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal Cry1Aa toxin, FEBS Lett., 460, 385, 10.1016/S0014-5793(99)01327-7

Pacquelet, 2003, Binding site for p120/δ-catenin is not required for Drosophila E-cadherin function in vivo, J. Cell Biol., 160, 313, 10.1083/jcb.200207160

Sangadala, 1994, A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro, J. Biol. Chem., 269, 10088, 10.1016/S0021-9258(17)36993-4

Santoni, 2000, Membrane proteins and proteomics: Un amour impossible?, Electrophoresis, 21, 1054, 10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8

Schnepf, 1998, Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Rev., 62, 775, 10.1128/MMBR.62.3.775-806.1998

Schwartz, 1993, Selective repression of actin and myosin heavy chain expression during the programmed death of insect skeletal muscle, Dev. Biol., 158, 448, 10.1006/dbio.1993.1202

Sherrier, 1999, Glycosylphosphatidylinositol-anchored cell-surface proteins from Arabidopsis, Electrophoresis, 20, 2027, 10.1002/(SICI)1522-2683(19990701)20:10<2027::AID-ELPS2027>3.0.CO;2-A

Takesue, 1989, Membrane anchors of alkaline phosphatase and trehalase associated with the plasma membrane of larval midgut epithelial cells of the silkworm, Bombyx mori, J. Biochem. (Tokyo), 105, 998, 10.1093/oxfordjournals.jbchem.a122794

Towbin, 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. USA, 76, 4350, 10.1073/pnas.76.9.4350

Vadlamudi, 1995, Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem., 270, 5490, 10.1074/jbc.270.10.5490

Wilkins, 1999, High-throughput mass spectrometric discovery of protein post-translational modifications, J. Mol. Biol., 289, 645, 10.1006/jmbi.1999.2794

Zhuang, 2002, Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation, J. Biol. Chem., 277, 13863, 10.1074/jbc.M110057200