Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xác định các dị thường từ trường biển dựa trên phương pháp độ tương đồng đường cong cửa sổ trượt
Tóm tắt
Các dị thường từ trường biển đóng một vai trò thiết yếu trong kiến tạo kiến tạo và động lực học bề mặt trái đất. Phương pháp truyền thống để xác định các dị thường từ trường biển là so sánh trực quan các đường cong dị thường từ trường tổng hợp và quan sát, và thường không có đánh giá định lượng cho các kết quả nhận dạng. Do đó, chúng tôi đã phát triển phương pháp độ tương đồng đường cong cửa sổ trượt (SWCS) để xác định khách quan các dị thường từ trường biển và đánh giá định lượng các kết quả nhận dạng. Các thí nghiệm mô hình tổng hợp và ứng dụng thực tiễn cho thấy phương pháp SWCS là khả thi và hiệu quả trong việc xác định các dị thường từ trường biển có tốc độ tách giãn nhanh. Các ứng dụng của phương pháp SWCS cho thấy rằng các cửa sổ lý thuyết sử dụng các chu kỳ lưỡng cực kết hợp có thể cải thiện độ chính xác của việc xác định.
Từ khóa
#dị thường từ trường biển #phương pháp độ tương đồng đường cong #kiến tạo #động lực học bề mặt trái đất #xác định khách quanTài liệu tham khảo
Blakely RJ (1976) An age-dependent, two-layer model for marine magnetic anomalies. In: Woollard GP, Sutton GH, Manghnani MH, Moberly R (eds) The geophysics of the Pacific Ocean basin and its margin. American Geophysical Union, Washington, DC. https://doi.org/10.1029/GM019p0227
Busse FH, Simitev RD (2008) Toroidal flux oscillation as possible cause of geomagnetic excursions and reversals. Phys Earth Planet Inter 168(3):237–243. https://doi.org/10.1016/j.pepi.2008.06.007
Cande SC (1976) A palaeomagnetic pole from Late Cretaceous marine magnetic anomalies in the Pacific. Geophys J Int 44(3):547–566. https://doi.org/10.1111/j.1365-246X.1976.tb00292.x
Cande SC, Kent DV (1976) Constraints imposed by the shape of marine magnetic anomalies on the magnetic source. J Geophys Res 81(23):4157–4162. https://doi.org/10.1029/JB081i023p04157
Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res Solid Earth 100(B4):6093–6095. https://doi.org/10.1029/94JB03098
Choe H, Dyment J (2020) Fading magnetic anomalies, thermal structure and earthquakes in the Japan Trench. Geology 48(3):278–282. https://doi.org/10.1130/G46842.1
Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426(6965):405–412. https://doi.org/10.1038/nature02128
Dyment J, Arkani-Hamed J (1995) Spreading-rate-dependent magnetization of the oceanic lithosphere inferred from the anomalous skewness of marine magnetic anomalies. Geophys J Int 121(3):789–804. https://doi.org/10.1111/j.1365-246X.1995.tb06439.x
Dyment J, Arkani-Hamed J (1998) Contribution of lithospheric remanent magnetization to satellite magnetic anomalies over the world’s oceans. J Geophys Res Solid Earth 103(B7):15423–15441. https://doi.org/10.1029/97JB03574
Dyment J, Cande SC, Arkani-Hamed J (1994) Skewness of marine magnetic anomalies created between 85 and 40 Ma in the Indian Ocean. J Geophys Res Solid Earth 99(B12):24121–24134. https://doi.org/10.1029/94jb02061
Ferré EC, Kupenko I, Martín-Hernández F et al (2021) Magnetic sources in the Earth’s mantle. Nat Rev Earth Environ 2(1):59–69. https://doi.org/10.1038/s43017-020-00107-x
Gee JS, Kent DV (2007) Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. Treatise Geophysics 5:455–507. https://doi.org/10.1016/B978-044452748-6.00097-3
Gee JS, Cande SC, Hildebrand JA et al (2000) Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor magnetic anomalies. Nature 408(6814):827–832
Granot R, Dyment J (2015) The cretaceous opening of the South Atlantic Ocean. Earth & Planet Sci Lett 414:156–163. https://doi.org/10.1016/j.epsl.2015.01.015
Granot R, Dyment J (2019) The influence of post-accretion sedimentation on marine magnetic anomalies. Geophys Res Lett 46(9):4645–4652. https://doi.org/10.1029/2019GL082265
Gürer D, Granot R, van Hinsbergen DJJ (2022) Plate tectonic chain reaction revealed by noise in the Cretaceous quiet zone. Nat Geosci. https://doi.org/10.1038/s41561-022-00893-7
Harrison CGA (1987) Marine magnetic anomalies-the origin of the stripes. Annu Rev Earth Planet Sci 15(1):505–543. https://doi.org/10.1146/annurev.ea.15.050187.002445
Honsho C, Dyment J, Tamaki K et al (2009) Magnetic structure of a slow-spreading ridge segment: Insights from near-bottom magnetic measurements on board a submersible. J Geophys Res Solid Earth. https://doi.org/10.1029/2008JB005915
Jacob J, Dyment J, Yatheesh V (2014) Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia. J Geophys Res Solid Earth 119(1):169–190. https://doi.org/10.1002/2013JB010285
Kidd RGW (1977) The nature and shape of the sources of marine magnetic anomalies. Earth & Planet Sci Lett 33(3):310–320. https://doi.org/10.1016/0012-821X(77)90083-8
Korenaga J (1995) Comprehensive analysis of marine magnetic vector anomalies. J Geophys Res Solid Earth 100(B1):365–378. https://doi.org/10.1029/94JB02596
Laj C, Channell JET (2007) Geomagnetic excursions, in treatise on geophysics. In: Kono M (ed) Geomagnetism. Elsevier, Amsterdam, pp 373–416
Li CF, Xu X, Lin J et al (2014) Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem Geophys Geosystems 15(12):4958–4983. https://doi.org/10.1002/2014GC005567
Li YJ, Liu QS, Wei DP et al (2018) Variations of Earth Magnetic Field Intensity for the Past 5 Myr Derived From Marine Magnetic Anomalies in a Slow-to-intermediate-spreading South Atlantic Ridge. J Geophys Res Solid Earth 123(9):7321–7337. https://doi.org/10.1029/2018JB016099
Li YJ, Liu JB, Liu QS (2021) Geomagnetic field paleointensity spanning the past 11 Myr from Marine Magnetic Anomalies in the ssouthern hemisphere. Geophys Res Lett 48(11):e2021GL093235. https://doi.org/10.1029/2021GL093235
Lonsdale P (1977) Structural geomorphology of a fast-spreading rise crest: the East Pacific Rise near 3° 25′ S. Mar Geophys Res 3(3):251–293. https://doi.org/10.1007/BF00285656
Macdonald KC (1982) Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annu Rev Earth Planet Sci 10(1):155–190. https://doi.org/10.1146/annurev.ea.10.050182.001103
Menard HW (1967) Sea floor spreading, topography, and the second layer. Science 157(3791):923–924. https://doi.org/10.1126/science.157.3791.923
Müller RD, Sdrolias M, Gaina C, Roest RW (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9(4):1–16. https://doi.org/10.1029/2007GC001743
Roberts AP (2008) Geomagnetic excursions: knowns and unknowns. Geophys Res Lett 35(17):1–7. https://doi.org/10.1029/2008GL034719
Roberts AP, Lewin-Harris JC (2000) Marine magnetic anomalies: evidence that ‘tiny wiggles’ represent short-period geomagnetic polarity intervals. Earth Planet Sci Lett 183(3–4):375–388. https://doi.org/10.1016/S0012-821X(00)00290-9
Talwani M (1964) (1964) Computation of magnetic anomalies caused by two-dimensional bodies of arbitrary shape. Computers in the Mineral Industries 1:464–480
Tominaga M, Tivey MA, Sager WW (2021) A new middle to Late Jurassic Geomagnetic Polarity Time Scale (GPTS) from a multiscale marine magnetic anomaly survey of the Pacific Jurassic Quiet Zone. J Geophys Res Solid Earth 126(3):e2020JB021136. https://doi.org/10.1029/2020JB021136
Veevers JJ, Li ZX (1991) Review of seafloor spreading around Australia. II. Marine magnetic anomaly modelling. Aus J Earth Sci 38(4):391–408. https://doi.org/10.1080/08120099108727980
Vine FJ (1966) Spreading of the Ocean Floor: New Evidence: Magnetic anomalies may record histories of the ocean basins and Earth’s magnetic field for 2 × 108 years. Science 154(3755):1405–1415. https://doi.org/10.1126/science.154.3755.1405
Vine FJ, Matthews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199:947–949. https://doi.org/10.1038/199947a0
Wang MM, Liu ZX (2018) The effects of anisotropy of marine magnetic anomalies on the Curie point depth estimates from spectral analysis. Acta Geophys 66(5):1019–1030. https://doi.org/10.1007/s11600-018-0197-z
Wilson DS, Teagle DAH, Alt JC et al (2006) Drilling to gabbro in intact ocean crust. Science 312(5776):1016–1020. https://doi.org/10.1126/science.1126090
Won IJ, Bevis M (1987) Computing the gravitational and magnetic anomalies due to a polygon: algorithms and fortran subroutines. Geophysics 52(2):202–205. https://doi.org/10.1190/1.1442298