Identification of low rank vector processes
Tài liệu tham khảo
Alpago, 2018, Identification of sparse reciprocal graphical models, IEEE Control Systems Letters, 2, 659, 10.1109/LCSYS.2018.2845943
Alpago, 2021, Data-driven link prediction over graphical models, IEEE Transactions on Automatic Control
Basu, 2019, Low rank and structured modeling of high-dimensional vector autoregressions, IEEE Transactions on Singnal Processing, 67, 1207, 10.1109/TSP.2018.2887401
Bauer, 1955, Ein direktes iterationsverfahren zur hurwitz zerlegung eines polynoms, Archiv der Elektrischen Übertragung, 9, 285
Bazanella, 2017, Identifiability of dynamical networks: which nodes need be measured?, 5870
Bottegal, 2015, Modeling complex systems by generalized factor analysis, IEEE Transactions on Automatic Control, 60, 759, 10.1109/TAC.2014.2357913
Caines, 1988
Caines, 1975, Feedback between stationary stochastic processes, IEEE Transactions on Automatic Control, AC-20, 498, 10.1109/TAC.1975.1101008
Cao, W., Lindquist, A., & Picci, G. (2020). Spectral rank, feedback, causality and the indirect method for CARMA identification. In Proceedings of 59th IEEE conference on decision and control CDC, (pp. 4299–4305). Jeju, Korea (South).
Cao, 2021
Chiuso, 2012, A Bayesian approach to sparse dynamic network identification, Automatica, 48, 1553, 10.1016/j.automatica.2012.05.054
Ciccone, 2020, Learning latent variable dynamic graphical models by confidence sets selection, IEEE Transactions on Automatic Control, 65, 5130, 10.1109/TAC.2020.2970409
Crescente, F., Falconi, L., Rozzi, F., Ferrante, A., & Zorzi, M. (2020). Learning AR factor models. In Proceedings of 59th IEEE conference on decision and control CDC, (pp. 274–270). Jeju, Korea (South).
Deistler, 2019, Singular ARMA systems: A structural theory, Numerical Algebra, Control and Optimization, 9, 383, 10.3934/naco.2019025
Deistler, 2010, Generalized linear dynamic factor models: An approach via singular autoregressions, European Journal of Control, 16, 211, 10.3166/ejc.16.211-224
Doyle, 1992
Ferrante, 2022
Fuhrmann, 1981
Georgiou, 2019, Dynamic relations in sampled processes, Control Systems Letters, 3, 144, 10.1109/LCSYS.2018.2859481
Gevers, 1981, Representation of jointly stationary feedback free processes, International Journal of Control, 33, 777, 10.1080/00207178108922956
Gustavsson, 1977, Identification of processes in closed loop–identifiability and accuracy aspects, Automatica, 13, 59, 10.1016/0005-1098(77)90009-7
Hidalgo, 2009, A dynamic network approach for the study of human phenotypes, PLoS Computational Biology, 5, 10.1371/journal.pcbi.1000353
Kailath, 1980
Lichota, 2019, Frequency responses identification from multi-axis maneuver with simultaneous multisine inputs, Journal of Guidance, Control, and Dynamics, 42, 2550, 10.2514/1.G004346
Lindquist, 2015
Lippi, 2022, High-dimensional dynamic factor models: A selective survey and lines of future research, Econometrics and Statistics, 1
Ljung, 2002
Oară, 1999, Minimal degree coprime factorization of rational matrices, SIAM Journal on Matrix Analysis and Applications, 21, 245, 10.1137/S0895479898339979
Picci, 2021, Modeling and identification of low rank vector processes, 631
Remple, 2006
Rissanen, 1973, Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with applications to factoring positive matrix Polynomials, Journal of Mathematics of Computation, 27, 147, 10.1090/S0025-5718-1973-0329235-5
Söderström, 1989
Van den Hof, P., Weerts, H., & Dankers, A. (2017). Prediction error identification with rank-reduced output noise. In Proceedings of 2017 American control conference (pp. 382–387). Seattle, USA.
Weerts, 2018, Identifiability of linear dynamic networks, Automatica, 89, 247, 10.1016/j.automatica.2017.12.013
Weerts, 2018, Prediction error identification of linear dynamic networks with rank-reduced noise, Automatica, 98, 256, 10.1016/j.automatica.2018.09.033
Yuan, 2011, Robust dynamical network structure reconstruction, Automatica, 47, 1230, 10.1016/j.automatica.2011.03.008
Zhou, 1995
Zorzi, 2016, AR identification of latent-variable graphical models, IEEE Transactions on Automatic Control, 61, 2327, 10.1109/TAC.2015.2491678