Identification of key gene networks controlling vernalization development characteristics of Isatis indigotica by full-length transcriptomes and gene expression profiles

Pan Wang1, Dong Liu1, Fan Yang2,1, Hui Ge1, Xingsheng Zhao1, Honggang Chen1, Tao Du1
1Gansu University of Chinese Medicine, Lanzhou, China
2Pingliang Academy of Agricultural Sciences, Pingliang, China

Tóm tắt

AbstractIsatis indigotica Fort., as a common Chinese medicinal raw material, will lose its medicinal value if it blooms early, so it is highly valuable to clarify the induction mechanism of the vernalization of I. indigotica at low temperature. In this study, the concentrations of soluble sugar, proline, glutathione and zeatin in two germplasms of I. indigotica with different degrees of low temperature tolerance (Y1 and Y2) were determined at 10 days, 20 days and 30 days of low-temperature treatment, and the full-length transcriptome of 24 samples was sequenced by Nanopore sequencing with Oxford Nanopore Technologies (ONT). After that, the data of transcripts involved in the vernalization of I. indigotica at low temperature were obtained, and these transcripts were identified using weighted gene co-expression network analysis (WGCNA). The results revealed the massive accumulation of soluble sugar and proline in Y1 and Y2 after low temperature induction. A total of 18,385 new transcripts, 6168 transcription factors and 470 lncRNAs were obtained. Differential expression analysis showed that gibberellin, flavonoids, fatty acids and some processes related to low temperature response were significantly enriched. Eight key transcripts were identified by WGCNA, among which ONT.14640.1, ONT.9119.1, ONT.13080.2 and ONT.16007.1 encodes a flavonoid transporter, 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), growth factor gene and L-aspartate oxidase in plants, respectively. It indicated that secondary metabolites such as hormones and flavonoids play an important role in the vernalization of I. indigotica. qRT-PCR proved the reliability of transcriptome results. These results provide important insights on the low-temperature vernalization of I. indigotica, and provide a research basis for analyzing the vernalization mechanism of I. indigotica.

Từ khóa


Tài liệu tham khảo

An YW, Yuan B, Wang JC, Wang C, Liu TT, Song S, Liu HQ (2021a) Clinical characteristics and impacts of traditional Chinese medicine treatment on the convalescents of COVID-19. Int J Med Sci 18:646–651. https://doi.org/10.7150/ijms.52664

An XD, Zhang YH, Duan LY, Jin D, Zhao SH, Zhou RR, Duan YY, Lian FM, Tong XL (2021b) The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed Pharmacother 137:111267. https://doi.org/10.1016/j.biopha.2021.111267

Arabia S, Shah M, Sami AA, Ghosh A, Islam T (2021) Identification and expression profiling of proline metabolizing genes in Arabidopsis thaliana and Oryza sativa to reveal their stress-specific transcript alteration. Physiol Mol Biol Plants 7:1469–1485. https://doi.org/10.1007/s12298-021-01023-0

Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585. https://doi.org/10.1093/bioinformatics/btx198

Chang SJ, Chang YC, Lu KZ, Tsou YY, Lin CW (2012) Antiviral activity of Isatis indigotica extract and its derived indirubin against Japanese encephalitis virus. Evid Based Complement Alternat Med 2012:1–7. https://doi.org/10.1155/2012/925830

Chao Q, Gao ZF, Zhang D, Zhao BG, Dong FQ, Fu CX, Liu LJ, Wang BC (2019) The developmental dynamics of the Populus stem transcriptome. Plant Biotechnol J 17:206–219. https://doi.org/10.1111/pbi.12958

Chen JF, Dong X, Li Q, Zhou X, Gao SH, Chen RB, Sun LN, Zhang L, Chen WS (2013) Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BMC Genom 14:857. https://doi.org/10.1186/1471-2164-14-857

Chen Q, Lan HY, Peng W, Rahman K, Liu QC, Luan X, Zhang H (2021) Isatis indigotica: a review of phytochemistry, pharmacological activities and clinical applications. J Pharm Pharmacol. https://doi.org/10.1093/jpp/rgab014

Chinese Pharmacopoeia Commission (2020) Pharmacopoeia of the People’s Republic of China, vol 1. China Medical Science Press, Beijing, pp 214–215 (in Chinese)

Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459. https://doi.org/10.1093/jxb/erj027

Cui J, Luan YS, Jiang N, Bao H, Meng J (2017) Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J 89:577–589. https://doi.org/10.1111/tpj.13408

Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. https://doi.org/10.1126/science.1162986

Garcia-Macias P, John P (2004) Formation of natural indigo derived from woad (Isatis tinctoria L.) in relation to product purity. J Agric Food Chem 52:7891–7896. https://doi.org/10.1021/jf0486803

Hao JF, Pétriacq P, Bont DL, Hodges M, Gakière B (2018) Characterization of l-aspartate oxidase from Arabidopsis thaliana. Plant Sci 271:133–142. https://doi.org/10.1016/j.plantsci.2018.03.016

Hatano-Iwasaki A, Ogawa K (2012) Overexpression of GSH1 gene mimics transcriptional response to low temperature during seed vernalization treatment of Arabidopsis. Plant Cell Physiol 53:1195–1203. https://doi.org/10.1093/pcp/pcs075

Heng L (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. https://doi.org/10.1093/bioinformatics/bty191

Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao RP, Bitton F, Caboche M, Cannoot B, Chardakov V, Cognet-Holliger C, Colot V, Crowe M, Darimont C, Durinck S, Eickhoff H, Longevialle AF, Farmer EE, Grant M, Kuiper MT, Lehrach H, Léon C, Leyva A, Lundeberg J, Lurin C, Moreau Y, Nietfeld W, Paz-Ares J, Reymond P, Rouzé P, Sandberg G, Segura MD, Serizet C, Tabrett A, Taconnat L, Thareau V, Van HP, Vercruysse S, Vuylsteke M, Weingartner M, Weisbeek PJ, Wirta V, Wittink FR, Zabeau M, Small I (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14:2176–2189. https://doi.org/10.1101/gr.2544504

Hsuan SL, Chang SC, Wang SY, Liao TL, Jong TT, Chien MS, Lee WC, Chen SS, Liao JW (2009) The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus. J Ethnopharmacol 123:61–67. https://doi.org/10.1016/j.jep.2009.02.028

Jie C, Luo Z, Chen H, Wang M, Yan C, Mao ZF, Xiao GK, Kurihara H, Li YF, He RR (2017) Indirubin, a bisindole alkaloid from Isatis indigotica, reduces H1N1 susceptibility in stressed mice by regulating MAVS signaling. Oncotarget 8:105615–105629. https://doi.org/10.18632/oncotarget.22350

Kang MH, Wu HL, Yang Q, Huang L, Hu QJ, Ma T, Li ZY (2020) Liu JQ (2020) A chromosome-scale genome assembly of Isatis indigotica, an important medicinal plant used in traditional Chinese medicine: an Isatis genome. Hortic Res 7:18. https://doi.org/10.1038/s41438-020-0240-5

Kindgren P, Ard R, Ivanov M, Marquardt S (2019) Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat Commun 10:5141. https://doi.org/10.1038/s41467-019-13269-0

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:1–13. https://doi.org/10.1186/1471-2105-9-559.)

Lei M, Li ZY, Wang JB, Fu YL, Xu L (2019) Ectopic expression of the Aechmea fasciata APETALA2 gene AfAP2-2 reduces seed size and delays flowering in Arabidopsis. Plant Physiol Biochem 139:642–650. https://doi.org/10.1016/j.plaphy.2019.03.034

Li ZN, Liu N, Zhang W, Wu CY, Jiang YJ, Ma J, Li MY, Sui SZ (2020) Integrated transcriptome and proteome analysis provides insight into chilling-induced dormancy breaking in Chimonanthus praecox. Hortic Res 7:198. https://doi.org/10.1038/s41438-020-00421-x

Li F, Hu Q, Chen FD, Jiang JF (2021) Transcriptome analysis reveals vernalization is independent of cold acclimation in Arabidopsis. BMC Genom 22:462. https://doi.org/10.1186/s12864-021-07763-3

Liang XL, Huang Y, Pan XP, Hao YB, Chen XW, Jiang HM, Li J, Zhou BX, Yang ZF (2020) Erucic acid from Isatis indigotica Fort. suppresses influenza A virus replication and inflammation in vitro and in vivo through modulation of NF-κB and p38 MAPK pathway. J Pharm Anal 10:130–146. https://doi.org/10.1016/j.jpha.2019.09.005

Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao PD (2005) Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 68:36–42. https://doi.org/10.1016/j.antiviral.2005.07.002.)

Liu CT, Ou SJ, Mao BG, Tang JY, Wang W, Wang HR, Cao SY, Schläppi MR, Zhao BR, Xiao GY, Wang XP, Chu CC (2018) Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun 9:3302. https://doi.org/10.1038/s41467-018-05753-w

Lotts T, Kabrodt K, Hummel J, Binder D, Schellenberg I, Ständer S, Agelopoulos K (2020) Isatis tinctoria L.-derived petroleum ether extract mediates anti-inflammatory effects via inhibition of interleukin-6, interleukin-33 and mast cell degranulation. Acta Derm Venereol 100:1–9. https://doi.org/10.2340/00015555-3476

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

Lu L, Zuo WF, Wang CC, Li CX, Feng T, Li X, Wang C, Yao YX, Zhang ZY, Chen XS (2021) Analysis of the postharvest storage characteristics of the new red-fleshed apple cultivar “meihong.” Food Chem 354:129470. https://doi.org/10.1016/j.foodchem.2021.129470

Luo Z, Liu LF, Wang XH, Li W, Jie C, Chen H, Wei FQ, Lu DH, Yan CY, Liu B, Kurihara H, Li YF, He RR (2019) Epigoitrin, an alkaloid from Isatis indigotica, reduces H1N1 Infection in stress-induced susceptible model in vivo and in vitro. Front Pharmacol 10:78. https://doi.org/10.3389/fphar.2019.00078

Luo J, Nvsvrot T, Wang N (2021) Comparative transcriptomic analysis uncovers conserved pathways involved in adventitious root formation in poplar. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-021-01054-7

Ma RF, Xiao Y, Lv ZY, Tan HX, Chen RB, Li Q, Chen JF, Wang Y, Yin J, Zhang L, Chen WS (2017) AP2/ERF transcription factor, Ii049, positively regulates lignan biosynthesis in Isatis indigotica through activating salicylic acid signaling and lignan/lignin pathway genes. Front Plant Sci 8:1361. https://doi.org/10.3389/fpls.2017.01361

Ma J, Wu HY, Chen YZ, Huang M, Zhang LS (2021) Thoughts on traditional chinese medicine treatment of novel coronavirus pneumonia based on two cases. Chin J Integr Med 27:375–378. https://doi.org/10.1007/s11655-020-3485-9

Nie SS, Li C, Wang Y, Xu L, Muleke EM, Tang MJ, Sun XC, Liu LW (2016a) Transcriptomic analysis identifies differentially expressed genes (DEGs) associated with bolting and flowering in radish (Raphanus sativus L.). Front Plant Sci 7:682. https://doi.org/10.3389/fpls.2016.00682

Nie SS, Li C, Xu L, Wang Y, Huang DQ, Muleke EM, Sun XC, Xie Y, Liu LW (2016b) De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering. BMC Genom 17:389. https://doi.org/10.1186/s12864-016-2633-2

Pan CP, Wang YQ, Tao L, Zhang H, Deng QX, Yang ZW, Chi ZH, Yang YM (2020) Single-molecule real-time sequencing of the full-length transcriptome of loquat under low-temperature stress. PLoS ONE 15:e0238942. https://doi.org/10.1371/journal.pone.0238942

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) String Tie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122

Qian CL, Ji ZJ, Zhu Q, Qi XH, Li QQ, Yin JD, Liu J, Kan J, Zhang M, Jin CH, Xiao LX (2021) Effects of 1-MCP on proline, polyamine, and nitric oxide metabolism in postharvest peach fruit under chilling stress. Horticultural Plant Journal 7:188–196. https://doi.org/10.1016/j.hpj.2020.12.007

Qin MM, Wang J, Zhang TY, Hu XY, Liu R, Gao TE, Zhao SJ, Yuan YL, Zheng JY, Wang ZR, Wei XY, Li T (2020) Genome-wide identification and analysis on YUCCA gene family in Isatis indigotica Fort. and IiYUCCA6-1 functional exploration. Int J Mol Sci 21:2188. https://doi.org/10.3390/ijms21062188

Qu RJ, Miao YJ, Cui YJ, Cao YW, Zhou Y, Tang XQ, Yang J, Wang FQ (2019) Selection of reference genes for the quantitative real-time PCR normalization of gene expression in Isatis indigotica fortune. BMC Mol Biol 20:9. https://doi.org/10.1186/s12867-019-0126-y.)

Qu RJ, Cao YW, Tang XQ, Sun LQ, Wei L, Wang KC (2021) Identification and expression analysis of the WRKY gene family in Isatis indigotica. Gene 783:145561. https://doi.org/10.1016/j.gene.2021.145561

Rahman A (2013) Auxin: a regulator of cold stress response. Physiol Plant 147:28–35. https://doi.org/10.1111/j.1399-3054.2012.01617.x

Rodrigues A, Santiago J, Rubio S, Saez A, Osmont KS, Gadea J, Hardtke CS, Rodriguez PL (2009) The Short-rooted phenotype of the Brevis radix mutant partly reflects root abscisic acid hypersensitivity. Plant Physiol 149:1917–1928. https://doi.org/10.1104/pp.108.133819

Salvini M, Boccardi TM, Sani E, Bernardi R, Tozzi S, Pugliesi C, Durante M (2008) Alpha-tryptophan synthase of Isatis tinctoria: gene cloning and expression. Plant Physiol Biochem 46:715–723. https://doi.org/10.1016/j.plaphy.2008.04.002

Santarius KA (1973) The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta 113:105–114. https://doi.org/10.1007/BF00388196.)

Sato H, Takasaki H, Takahashi F, Suzuki T, Iuchi S, Mitsuda N, Ohme-Takagi M, Ikeda M, Seo M, Yamaguchi-Shinozaki K, Shinozaki K (2018) Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc Natl Acad Sci U S A 115:11178–11187. https://doi.org/10.1073/pnas.1811491115

Seki M, Katsumata E, Suzuki A, Sereewattanawoot S, Sakamoto Y, Mizushima-Sugano J, Sugano S, Kohno T, Frith MC, Tsuchihara K, Suzuki Y (2019) Evaluation and application of RNA-Seq by MinION. DNA Res 26:55–65. https://doi.org/10.1093/dnares/dsy038

Spataro G, Taviani P, Negri V (2007) Genetic variation and population structure in a Eurasian collection of Isatis tinctoria L. Genet Resour Crop Evol 54:573–584. https://doi.org/10.1007/s10722-006-0014-4)

Su G, Morris JH, Demchak B, Bader GD (2014) Biological network exploration with Cytoscape 3. Curr Protoc Bioinform 2014:1–24. https://doi.org/10.1002/0471250953.bi0813s47

Sun SH, Hu CG, Qi XJ, Chen JY, Zhong YP, Muhammad A, Lin MM, Fang JB (2021) The AaCBF4-AaBAM3.1 module enhances freezing tolerance of kiwifruit (Actinidia arguta). Hortic Res 8:97. https://doi.org/10.1038/s41438-021-00530-1

Tang XQ, Xiao YH, Lv TT, Wang FQ, Zhu QH, Zheng TQ, Yang J (2014) High-throughput sequencing and De Novo assembly of the Isatis indigotica transcriptome. PLoS ONE 9:e102963. https://doi.org/10.1371/journal.pone.0102963.eCollection2014

Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323. https://doi.org/10.1016/j.pbi.2005.03.005.)

Vaseva I, Todorova D, Malbeck J, Travnickova A, Machackova I (2009) Mild temperature stress modulates cytokinin content and cytokinin oxidase/dehydrogenase activity in young pea plants. Acta Agron Hung 57:33–40. https://doi.org/10.1556/AAgr.57.2009.1.4)

Wang Y, Fan X, Lin F, He G, Terzaghi W, Zhu D, Deng XW (2014) Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci U S A 111:10359–10364. https://doi.org/10.1073/pnas.1409457111

Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu Z, Olson A, Stein JC, Ware D (2016) Unveiling the complexity of the maizetran-scriptome by single-molecule long-read sequencing. Nat Commun 7:11708. https://doi.org/10.1038/ncomms11708.)

Wang TB, Wang XW, Zhuo Y, Si CY, Yang L, Meng LJ, Zhu B (2020) Antiviral activity of a polysaccharide from Radix Isatidis (Isatis indigotica Fortune) against hepatitis B virus (HBV) in vitro via activation of JAK/STAT signal pathway. J Ethnopharmacol 257:112782. https://doi.org/10.1016/j.jep.2020.112782

Wu YX, Zhang ZX, Hu H, Li DM, Qiu GF, Hu XM, He XJ (2011) Novelindole C-glycosides from Isatis indigotica and their potential cytotoxic activity. Fitoterapia 82:288–292. https://doi.org/10.1016/j.fitote.2010.10.016

Xie C, Mao XX, Huang JJ, Ding Y, Wu JM, Dong S, Kong L, Gao G, Li CY, Wei LP (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322. https://doi.org/10.1093/nar/gkr483.)

Xu J, Zhang YF (2020) Traditional Chinese medicine treatment of COVID-19. Complement Ther Clin Pract 39:101165. https://doi.org/10.1016/j.ctcp.2020.101165

Xu SJ, Xiao J, Yin F, Guo XY, Xing LJ, Xu YY, Chong K (2019) The protein modifications of O-GlcNAcylation and phosphorylation mediate vernalization response for flowering in winter wheat. Plant Physiol 180:1436–1449. https://doi.org/10.1104/pp.19.00081

Xu SJ, Dong Q, Deng M, Lin DX, Xiao J, Cheng PL, Xing LJ, Niu YD, Gao CX, Zhang WH, Xu YY, Chong K (2021) The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant 21:187–188. https://doi.org/10.1016/j.molp.2021.05.026

Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:14. https://doi.org/10.1186/gb-2010-11-2-r14

Yu PH, Jiang N, Fu WM, Zheng GJ, Li GG, Feng BH, Chen TT, Ma JY, Li HB, Tao LX, Fu GF (2020) ATP hydrolysis determines cold tolerance by regulating available energy for glutathione synthesis in rice seedling plants. Rice 13:1–16. https://doi.org/10.1186/s12284-020-00383-7

Zang YC, Miao Y, Wu T, Cheng ZH (2020) Development of a thin-layer chromatography bioautographic assay for neuraminidase inhibitors hyphenated with electrostatic field induced spray ionisation-mass spectrometry for identification of active Isatis indigotica root compounds. J Chromatogr A 1638:461597. https://doi.org/10.1016/j.chroma.2020.461597

Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17. https://doi.org/10.2202/1544-6115.1128

Zhang L, Chen JF, Zhou X, Chen XF, Li Q, Tan HX, Dong X, Xiao Y, Chen LD, Chen WS (2016a) Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica Fort. Plant Biotechnol J14:2217–2227. https://doi.org/10.1111/pbi.12576

Zhang WJ, Zheng XX, Cheng N, Gai WW, Xue XH, Wang YX, Gao YW, Shan JJ, Yang ST, Xia XZ (2016b) Isatis indigotica root polysaccharides as adjuvants for an inactivated rabies virus vaccine. Int J Biol Macromol 87:7–15. https://doi.org/10.1016/j.ijbiomac.2016.02.023

Zhang DD, Sun Y, Shi YH, Wu XM, Jia Q, Chen KX, Li YM, Wang R (2020) Four new indole alkaloids from the roots of Isatis tinctoria. Nat Prod Res 1:1–7. https://doi.org/10.1080/14786419.2020.1779716

Zhang PY, Qiu X, Fu JX, Wang GR, Wang TC (2021) Systematic analysis of differentially expressed ZmMYB genes related to drought stress in maize. Physiol Mol Biol Plants 6:1295–1395. https://doi.org/10.1007/s12298-021-01013-2)

Zhao DY, Hao QX, Kang LP, Zhang Y, Chen ML, Wang TL, Guo LP (2016) Advance in studying early bolting of Umbelliferae medicinal plant. Zhongguo Zhong Yao Za Zhi 41:20–23. https://doi.org/10.4268/cjcmm20160104.)

Zhao WL, Jin L, Wang HZ, Cui ZJ, Hou J, Lu YY, Du T (2017) Production regionalization study of Isatidis Radix. Zhongguo Zhong Yao Za Zhi 42:4414–4418. https://doi.org/10.19540/j.cnki.cjcmm.2017.0193

Zhao XY, Li JR, Lian B, Gu HQ, Li Y, Qi YJ (2018) Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun 9:5056. https://doi.org/10.1038/s41467-018-07500-7

Zheng Y, Jiao C, Sun HH, Rosli HG, Pombo MA, Zhang PF, Banf M, Dai XX, Martin GB, Giovannoni JJ, Zhao PX, Rhee SY, Fei ZJ (2016) iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 9:1667–1670. https://doi.org/10.1016/j.molp.2016.09.014