Identification of geometrical properties of red blood cells from light scattering images using SVD

Mathematical and Computer Modelling - Tập 57 - Trang 1531-1542 - 2013
G. Apostolopoulos1, S.V. Tsinopoulos2, E. Dermatas1
1Department of Electrical Engineering and Computer Technology, University of Patras, Campus, 6 Eratosthenous Str, 26500, Patras, Greece
2Department of Mechanical Engineering, Technological Educational Institute of Patras, 26334 Patras, Greece

Tài liệu tham khảo

Plasek, 1982, Determination of undeformable erythrocytes in blood samples using light scattering, Appl. Opt., 21, 4335, 10.1364/AO.21.004335 Steinke, 1988, Comparison of Mie theory and the light scattering of red blood cells, Appl. Opt., 27, 4027, 10.1364/AO.27.004027 Hammer, 1998, Single scattering by red blood cells, Appl. Opt., 37, 7410, 10.1364/AO.37.007410 Twersky, 1991, Absorption and multiple scattering by biological suspensions, J. Opt. Soc. Am. A, 8, 1135, 10.1364/JOSAA.8.001135 Lee, 1991, Absorptions and multiple scattering by suspensions of aligned red blood cells, J. Opt. Soc. Am. A, 8, 1135, 10.1364/JOSAA.8.001135 Kim, 1998, Successive order scattering transport approximation for laser light propagation in whole blood medium, IEEE Trans. Biomed. Eng., 45, 505, 10.1109/10.664206 Gandjbakhche, 1994, Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension, Appl. Opt., 33, 1070, 10.1364/AO.33.001070 Apostolopoulos, 2009, Estimation of size and shape of the human red blood cell using light scattering images, J. Comput. Methods Sci. Eng., 9, 19 Apostolopoulos, 2010, Recognition and identification of red blood cell size using angular radial transform and neural networks, vol. 29, 707 G. Apostolopoulos, S. Tsinopoulos, E. Dermatas, Estimation of Human Red Blood Cells size using light scattering images at multiple wavelengths, in: 9th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, World Scientific Proceedings, 2009, pp. 161–168. Constantinides, 1998, Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results, Appl. Opt., 37, 7310, 10.1364/AO.37.007310 Kinnunen, 2011, Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level, Biomed. Opt. Express, 2, 1803, 10.1364/BOE.2.001803 Strokotov, 2011, Polarized light-scattering profile-advanced characterization of nonspherical particles with scanning flow cytometry, J. Int. Soc. Adv. Cytometry, Part A, 570, 10.1002/cyto.a.21074 Golan, 2010, Flow cytometry using spectrally encoded confocal microscopy, Opt. Lett., 35, 2218, 10.1364/OL.35.002218 Ding, 2010, Fourier transform light scattering (FTLS) of cells and tissues, J. Comput. Theoret. Nanosci., 7, 1, 10.1166/jctn.2010.1637 Dharmadhikari, 2004, Using an optical trap to fold and align single red blood cells, Current Sci., 86, 1432 David, 1996, Laser light scattering studies from blood platelets and their aggregates, Colloids Surf. B, 6, 10.1016/0927-7765(95)01236-2 T. Kanade, Picture processing system by computer complex and recognition of human faces, Department of information Science, Kyoto University, Nov. 1973. A.L. Yuille, D.S. Cohen, P.W. Hallinan, Feature extraction from faces using deformable templates, in: Proc. CVPR, 1989, San Diego, CA. Turk, 1991, Face recognition using eigenface method, IEEE Conf. Comput. Vision Pattern Recongn., 586 Tsinopoulos, 1999, Scattering of He–Ne laser light by an average-sized red blood cell, Appl. Opt., 25, 5499, 10.1364/AO.38.005499 Kuchel, 1992, Parametric equation representation of biconcave erythrocytes, Bull. Math. Biol., 61, 209, 10.1006/bulm.1998.0064 S. Munoz San Martin, J.L Sebastian, M. Sanchol, G. Alavarez, Modeling Human Erythrocytes shape and size abnormalities, q-bio. QM/0507024, 2005. Golub, 1996 Harris, 1998 Bohern, 1983 R. Epstein, P.W. Hallinan, A.L. Yuille, 5±2 Eigenimages suffice: an empirical investigation of low dimensional lighting models, in: Proceedings IEEE Workshop Physics-Based Vision, 1995, pp. 108–116. P.W. Hallinan, A low-dimensional representation of human faces for arbitrary lighting conditions, in: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 1994.