Identification of early molecular markers for breast cancer
Tóm tắt
The ductal carcinoma in situ (DCIS) of the mammary gland represents an early, pre-invasive stage in the development of invasive breast carcinoma. Since DCIS is a curable disease, it would be highly desirable to identify molecular markers that allow early detection. Mice transgenic for the WAP-SV40 early genome region were used as a model for DCIS development. Gene expression profiling was carried out on DCIS-bearing mice and control animals. Additionally, a set of human DCIS and invasive mammary tumors were analyzed in a similar fashion. Enhanced expression of these marker genes in human and murine samples was validated by quantitative RT-PCR. Besides, marker gene expression was also validated by immunohistochemistry of human samples. Furthermore in silico analyses using an online microarray database were performed. In DCIS-mice seven genes were identified that were significantly up-regulated in DCIS: DEPDC1, NUSAP1, EXO1, RRM2, FOXM1, MUC1 and SPP1. A similar up-regulation of homologues of the murine genes was observed in human DCIS samples. Enhanced expression of these genes in DCIS and IDC (invasive ductal carcinoma) was validated by quantitative RT-PCR and immunohistochemistry. By comparing murine markers for the ductal carcinoma in situ (DCIS) of the mammary gland with genes up-regulated in human DCIS-samples we were able to identify a set of genes which might allow early detection of DCIS and invasive carcinomas in the future. The similarities between gene expression in DCIS and invasive carcinomas in our data suggest that the early detection and treatment of DCIS is of utmost relevance for the survival of patients who are at high risk of developing breast carcinomas.
Tài liệu tham khảo
Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B: The case for early detection. Nat Rev Cancer. 2003, 3: 243-252. 10.1038/nrc1041
Kuerer HM, Albarracin CT, Yang WT, Cardiff RD, Brewster AM, Symmans WF: Ductal carcinoma in situ: state of the science and roadmap to advance the field. J Clin Oncol. 2009, 27: 279-288. 10.1200/JCO.2008.18.3103
Sakorafas GH, Farley DR, Peros G: Recent advances and current controversies in the management of DCIS of the breast. Cancer Treat Rev. 2008, 34: 483-497. 10.1016/j.ctrv.2008.03.001
Wiechmann L, Kuerer HM: The molecular journey from ductal carcinoma in situ to invasive breast cancer. Cancer. 2008, 112: 2130-2142. 10.1002/cncr.23430
Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mansson H: The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev. 2007, 16: 1087-1097. 10.1158/1055-9965.EPI-06-1008
Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P: Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA. 2003, 100: 5974-5979. 10.1073/pnas.0931261100
Nishidate T, Katagiri T, Lin ML, Mano Y, Miki Y, Kasumi F: Genome-wide gene-expression profiles of breast-cancer cells purified with laser microbeam microdissection: identification of genes associated with progression and metastasis. Int J Oncol. 2004, 25: 797-819.
Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M: Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res. 2006, 66: 5278-5286. 10.1158/0008-5472.CAN-05-4610
Schulze-Garg C, Lohler J, Gocht A, Deppert W: A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland. Oncogene. 2000, 19: 1028-1037. 10.1038/sj.onc.1203281
Cardiff RD, Moghanaki D, Jensen RA: Genetically engineered mouse models of mammary intraepithelial neoplasia. J Mammary Gland Biol Neoplasia. 2000, 5: 421-437. 10.1023/A:1009534129331
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262
McDonald SL, Silver A: The opposing roles of Wnt-5a in cancer. Br J Cancer. 2009, 101: 209-214. 10.1038/sj.bjc.6605174
Jannasch K, Dullin C, Heinlein C, Krepulat F, Wegwitz F, Deppert W: Detection of different tumor growth kinetics in single transgenic mice with oncogene-induced mammary carcinomas by flat-panel volume computed tomography. Int J Cancer. 2009, 125: 62-70. 10.1002/ijc.24332
Utz AC, Hirner H, Blatz A, Hillenbrand A, Schmidt B, Deppert W: Analysis of cell type-specific expression of CK1 epsilon in various tissues of young adult BALB/c Mice and in mammary tumors of SV40 T-Ag-transgenic mice. J Histochem Cytochem. 2010, 58: 1-15. 10.1369/jhc.2009.954628
Jakob J, Perlitz C, Ebert B, Klamm U, Kemmner W, Haensch W: Molecular imaging of breast cancer in a transgene mouse model. Chirurgisches Forum 2005. 2010, 83-85. Heidelberg: Springer Link
Karsten U, von Mensdorff-Pouilly S, Goletz S: What makes MUC1 a tumor antigen?. Tumour Biol. 2005, 26: 217-220. 10.1159/000086956
Singh R, Bandyopadhyay D: MUC1: a target molecule for cancer therapy. Cancer Biol Ther. 2007, 6: 481-486. 10.4161/cbt.6.4.4201
Patton S, Gendler SJ, Spicer AP: The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim Biophys Acta. 1995, 1241: 407-423.
Kohlgraf KG, Gawron AJ, Higashi M, Meza JL, Burdick MD, Kitajima S: Contribution of the MUC1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res. 2003, 63: 5011-5020.
Schroeder JA, Adriance MC, Thompson MC, Camenisch TD, Gendler SJ: MUC1 alters beta-catenin-dependent tumor formation and promotes cellular invasion. Oncogene. 2003, 22: 1324-1332. 10.1038/sj.onc.1206291
van der Vegt B, de Roos MA, Peterse JL, Patriarca C, Hilkens J, de Bock GH: The expression pattern of MUC1 (EMA) is related to tumour characteristics and clinical outcome of invasive ductal breast carcinoma. Histopathology. 2007, 51: 322-335. 10.1111/j.1365-2559.2007.02757.x
Diaz LK, Wiley EL, Morrow M: Expression of epithelial mucins Muc1, Muc2, and Muc3 in ductal carcinoma in situ of the breast. Breast J. 2001, 7: 40-45. 10.1046/j.1524-4741.2001.007001040.x
Patani N, Jouhra F, Jiang W, Mokbel K: Osteopontin expression profiles predict pathological and clinical outcome in breast cancer. Anticancer Res. 2008, 28: 4105-4110.
Tuck AB, Chambers AF: The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia. 2001, 6: 419-429. 10.1023/A:1014734930781
Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF: Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res. 2004, 10: 184-190. 10.1158/1078-0432.CCR-1405-2
Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF: The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med. 2001, 1: 621-632. 10.2174/1566524013363339
Tuck AB, O'Malley FP, Singhal H, Tonkin KS, Harris JF, Bautista D: Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med. 1997, 121: 578-584.
Tuck AB, O'Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N: Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer. 1998, 79: 502-508. 10.1002/(SICI)1097-0215(19981023)79:5<502::AID-IJC10>3.0.CO;2-3
Wai PY, Kuo PC: Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev. 2008, 27: 103-118. 10.1007/s10555-007-9104-9
Reinholz MM, Iturria SJ, Ingle JN, Roche PC: Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat. 2002, 74: 255-269. 10.1023/A:1016339120506
Oyama T, Sano T, Hikino T, Xue Q, Iijima K, Nakajima T: Microcalcifications of breast cancer and atypical cystic lobules associated with infiltration of foam cells expressing osteopontin. Virchows Arch. 2002, 440: 267-273. 10.1007/s004280100501
Jensen RA, Page DL, Holt JT: Identification of genes expressed in premalignant breast disease by microscopy-directed cloning. Proc Natl Acad Sci USA. 1994, 91: 9257-9261. 10.1073/pnas.91.20.9257
Cory JG, Sato A: Regulation of ribonucleotide reductase activity in mammalian cells. Mol Cell Biochem. 1983, 53-54: 257-266. 10.1007/BF00225258
Thelander L, Berg P: Isolation and characterization of expressible cDNA clones encoding the M1 and M2 subunits of mouse ribonucleotide reductase. Mol Cell Biol. 1986, 6: 3433-3442.
Pilarsky C, Wenzig M, Specht T, Saeger HD, Grutzmann R: Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia. 2004, 6: 744-750. 10.1593/neo.04277
Wierstra I, Alves J: FOXM1, a typical proliferation-associated transcription factor. Biol Chem. 2007, 388: 1257-1274. 10.1515/BC.2007.159
Wonsey DR, Follettie MT: Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res. 2005, 65: 5181-5189. 10.1158/0008-5472.CAN-04-4059
Bektas N, Haaf A, Veeck J, Wild PJ, Luscher-Firzlaff J, Hartmann A: Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC Cancer. 2008, 8: 42- 10.1186/1471-2407-8-42
Tran PT, Erdeniz N, Symington LS, Liskay RM: EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst). 2004, 3: 1549-1559. 10.1016/j.dnarep.2004.05.015
Rasmussen LJ, Rasmussen M, Lee B, Rasmussen AK, Wilson DM, Nielsen FC: Identification of factors interacting with hMSH2 in the fetal liver utilizing the yeast two-hybrid system. In vivo interaction through the C-terminal domains of hEXO1 and hMSH2 and comparative expression analysis. Mutat Res. 2000, 460: 41-52.
Raemaekers T, Ribbeck K, Beaudouin J, Annaert W, Van CM, Stockmans I: NuSAP, a novel microtubule-associated protein involved in mitotic spindle organization. J Cell Biol. 2003, 162: 1017-1029. 10.1083/jcb.200302129
Ryu B, Kim DS, Deluca AM, Alani RM: Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS ONE. 2007, 2: e594- 10.1371/journal.pone.0000594
Kanehira M, Harada Y, Takata R, Shuin T, Miki T, Fujioka T: Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene. 2007, 26: 6448-6455. 10.1038/sj.onc.1210466
Klein A, Wessel R, Graessmann M, Jurgens M, Petersen I, Schmutzler R: Comparison of gene expression data from human and mouse breast cancers: identification of a conserved breast tumor gene set. Int J Cancer. 2007, 121: 683-688. 10.1002/ijc.22630
Martin KJ, Patrick DR, Bissell MJ, Fournier MV: Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS ONE. 2008, 3: e2994- 10.1371/journal.pone.0002994
Richardson AL, Wang ZC, De NA, Lu X, Brown M, Miron A: X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell. 2006, 9: 121-132. 10.1016/j.ccr.2006.01.013
Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P: Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA. 2003, 100: 5974-5979. 10.1073/pnas.0931261100
Tamimi RM, Baer HJ, Marotti J, Galan M, Galaburda L, Fu Y: Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res. 2008, 10: R67- 10.1186/bcr2128
Sorlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR: Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics. 2006, 7: 127- 10.1186/1471-2164-7-127
Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC: Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009, 11: R7- 10.1186/bcr2222