Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xác định một dòng đột biến có khả năng chịu lạnh trong cỏ biển (Paspalum vaginatum)
Tóm tắt
Cỏ biển (Paspalum vaginatum Swartz) là một loại cỏ mùa ấm thường được sử dụng với khả năng chịu mặn vượt trội. Nhiệt độ thấp là một trong những điều kiện không thuận lợi chính hạn chế sự phát triển và vùng trồng của nó. Nghiên cứu này đã thiết lập một quy trình tạo đột biến bằng ethyl methanesulfonate (EMS) từ callus phôi sinh và lựa chọn một dòng đột biến cỏ biển với khả năng chịu lạnh tăng cường. Việc điều trị callus phôi sinh bằng 5 giờ với 0,8% EMS đã dẫn đến tỷ lệ sống sót khoảng 50% của callus, được sử dụng để tạo ra các đột biến từ callus phôi sinh của cỏ biển. Một dòng đột biến (A6) với khả năng chịu lạnh tăng cường đã được lựa chọn và xác định từ khoảng 10.000 cây con tái sinh. A6 có TEL50 (nhiệt độ dẫn đến 50% rò rỉ điện giải) thấp hơn và tỷ lệ sống sót cao hơn so với các cây giống hoang dã (WT) của nó sau 7 ngày thích nghi lạnh. Hệ thống phòng thủ chống oxy hóa phản ứng với nhiệt độ thấp ở cả hai kiểu gen, trong khi hoạt tính CAT cao hơn được duy trì ở A6 so với WT sau 3 ngày điều trị lạnh. Trong số bốn gen DREB1/CBF được kích thích bởi điều trị lạnh, mức độ bản sao DREB1A, DREB1D và DREB1E cao hơn đã được quan sát thấy ở A6 so với WT. Nồng độ axit amin tự do phản ứng với điều trị lạnh cũng cho thấy sự khác biệt giữa A6 và WT. Các kết quả cho thấy phản ứng của biểu hiện DREB1/CBFs, hoạt tính CAT và nồng độ axit amin tự do đối với lạnh được thay đổi khác nhau ở A6 so với WT, điều này liên quan đến khả năng chịu lạnh tăng cường ở A6. Một dòng đột biến với khả năng chịu lạnh tăng cường đã được lựa chọn bằng đột biến EMS trong cỏ biển. Nó có hoạt tính catalase cao hơn và các bản sao DREB1/CBFs với các axit amin tự do biến đổi so với WT.
Từ khóa
#cỏ biển #Paspalum vaginatum #đột biến #chịu lạnh #ethyl methanesulfonate #gen DREB1 #hoạt tính catalaseTài liệu tham khảo
Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216
Bhat R, Upadhyaya N, Chaudhury A, Raghavan C, Qiu FL, Wang HH, Wu JL, McNally K, Leung H, Till B, Henikoff S, Comai L (2007) Chemical and irradiation induced mutants and tilling. In: Upadhyaya NM (ed) Rice functional genomics: challenges, progress and prospects. Springer, New York, pp 149–180
Busey P (1980) Gamma ray dosage and mutation breeding in St. Augustinegrass. Crop Sci 20:81–184
Chen C, Lu S, Chen Y, Wang Z, Niu Y, Guo Z (2009) A gamma-ray induced dwarf mutant from seeded bermudagrass and its physiological responses to drought stress. J Am Soc Hort Sci 134:22–30
Chen J, Guo Z, Fang J, Lu S (2013) Physiological responses of a centipedegrass mutant to chilling stress. Agron J 105:1814–1820
Cuevas JC, López-Cobollo R, Alcázar P, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105
Cyril J, Powell GL, Duncan RR, Baird WV (2002) Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop Sci 42:2031–2037
Dickens R, Johnston WJ, Haaland RL (1981) Variability observed in centipedegrass grown from 60Co irradiated seed. Agron J 73:674–676
Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Shinozaki KY (2003) OsDREB genes in rice (Oryza sativa L.) encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 334:751–763
Erpen L, Devi HS, Grosser JW, Dutt M (2017) Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tiss Org 132:1–25
Fang C, Wang C, Wang P, Tang Y, Wang X, Cui F, Yu S (2012) Identification of a novel mutation in FAD2B from a peanut ems mutant with elevated oleate content. J Oleo Sci 61(3):143–148
Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471
Ge H, Li Y, Fu H, Long G, Luo L, Li R, Deng Z (2015) Production of sweet orange somaclones tolerant to citrus canker disease by in vitro mutagenesis with EMS. Plant Cell Tiss Org Cult 123:29–38
Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781
Greene EA, Codomo CA, Taylor NE, Henikoff JG, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740
Hanna WW, Elsner JE (1999) Registration of TifEagle bermudagrass. Crop Sci 39:1258
Hanna WW, Dobson J, Duncan RR, Thompson D (1997) Registration of ‘TifBlair’ centipedegrass. Crop Sci 37:1017
Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32:419–431
Ibitayo OO, Butler JD (1981) Cold hardiness of bermudagrass and Paspalum vaginatum Sw. HortSci 16:683–684
Jabeen N, Mirza B (2002) Ethyl methane sulfonate enhances genetic variability in Capsicum annum. Asian J Plant Sci 1:425–428
Jander G, Baerson SR, Hudak JA, Gonzalez KA, Gruys KJ, Last RL (2003) Ethyl methane sulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol 131:139–146
Jency JP, Ravikesavan R, Sumathi P, Raveendran M (2017) Effect of chemical mutagen on germination percentage and seedling parameters in Kodomillet variety Co 3. Int J Chem Stud 5:166–169
Jin W, Liu G, Yang X (2005) Callus mutation with EMS and drought-resistant mutants selection for wheat. Chin Agric Sci Bull 21:190–193
Kovács Z, Simon-Sarkadi L, Sovány C, Kirsch K, Galiba G, Kocsy G (2011) Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Sci 180:61–68
Kumar K, Gill MIS, Kaur H, Choudhary OP, Gosal SS (2010) In vitro mutagenesis and somaclonal variation assisted salt tolerance in ‘rough lemon’ (Citrus jambhiri Lush.). Eur J Hort Sci 75:233–238
Latha GM, Raman KV, Lima JM, Pattanayak D, Singh AK, Chinnusamy V (2019) Genetic engineering of indica rice with AtDREB1a gene for enhanced abiotic stress tolerance. Plant Cell Tiss Org 136:173–188
Lee YI, Lee IS, Lim YP (2002a) Variation in sweet potato regenerates from gamma-rays irradiated embryogenic callus. J Plant Biotechnol 4:163–170
Lee YI, Lee IS, Lim YP (2002b) Variation in sweet potato regenerates from gamma-rays irradiated embryogenic callus. J Plant Biotechnol 4:163–170
Li R, Bruneau AH, Qu R (2010) Morphological mutants of St. Augustinegrass induced by gamma ray irradiation. Plant Breeding 129:412–416
Liu B, Zhou Y, Lan W, Zhou Q, Liu G (2019) LlDREB1G, a novel DREB subfamily gene from Lilium longiflorum, can enhance transgenic Arabidopsis tolerance to multiple abiotic stresses. Plant Cell Tiss Org 138:489–506
Lu S, Wang Z, Niu Y, Chen Y, Chen H, Fan Z, Lin J, Yan K, Guo Z, Li H (2009) Gamma-ray radiation induced dwarf mutants of turf-type bermudagrass. Plant Breed 128:205–209
Lu S, Wang X, Guo Z (2013) Differential responses to chilling in Stylosanthes guianensis (Aublet) Sw. and its mutants. Agron J 105:377–382
Mao D, Chen C (2012) Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS ONE 7:e47275
Micke A, Donni B, Maluszynski M (1990) Induced mutations for crop improvement. Mutat Breed Rev 7:1–2
Muthusamy A, Vasanth K, Sivasankari D, Chandrasekar BR, Jayabalan N (2007) Effects of mutagens on somatic embryogenesis and plant regeneration in groundnut. Biol Plant 51:430–435
Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71
Pennycooke JC, Cheng H, Stockinger EJ (2008) Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol 146:1242–1254
Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tiss Org Cult 64:185–210
Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plant 45:481–487
Sattler S, Palmer N, Saballos A, Greene A, Xin Z, Sarath G, Vermerris W, Pedersen JF (2013) Identification and characterization of four missense mutations in Brown midrib 12 (Bmr12), the caffeic O-methyltranferase (COMT) of sorghum. BioEnergy Res 6:402–403
Shahba MA (2010) Comparative responses of bermudagrass and seashore paspalum cultivars commonly used in Egypt to combat salinity stress. Hortic Environ Biotechnol 51:383–390
Shahba MA, Alshammary SF, Abbas MS (2012) Effects of salinity on seashore paspalum cultivars at different mowing heights. Crop Sci 52:1358–1370
Thomashow MT (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577
Uddin MK, Juraimi AS, Ismail MR, Hossain MA, Othman R, Rahim AA (2012) Physiological and growth responses of six turfgrass species relative to salinity tolerance. Sci World J 2012:1–10
Wu X, Shi H, Chen X, Liu Y, Guo Z (2018a) Establishment of Agrobacterium-mediated transformation of seashore paspalum (Paspalum vaginatum O. Swartz. In Vitro Cell Dev Biol 54:545–552
Wu X, Shi H, Guo Z (2018b) Overexpression of a NF-YC gene results in enhanced drought and salt tolerance in transgenic seashore paspalum. Front Plant Sci 9:1355
Yoshihara R, Nozawa S, Hase Y, Narumi I, Hidema J, Sakamoto AN (2013) Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings. J Radiat Res 54:1050–1056
Zhai X, Wang W, Zhang F, Zhang T, Zhao W, Fu B, Li Z (2013) Temporal profiling of primary metabolites under chilling stress and its association with seedling chilling tolerance of rice (Oryza sativa L.). Rice 6:23
Zhuo C, Wang T, Guo Z, Lu S (2016) Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3- deficiency in transgenic tobacco plants. BMC Plant Biol 16:138