Identification of WRKYs using in silico tools for unraveling the modulation during abiotic stress response in Tef [Eragrostis tef (Zucc.) Trotter] a super grain

Mikias Wondimu Mulat1, Vimlendu Bhushan Sinha1
1Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, 201310, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aamir M, Singh VK, Meena M et al (2017) Structural and functional insights into WRKY3 and WRKY4 transcription factors to unravel the WRKY–DNA (W-Box) complex interaction in tomato (Solanum lycopersicum L.). A computational approach. Front Plant Sci 8:1–24. https://doi.org/10.3389/fpls.2017.00819

Aslam M, Sinha VB, Singh RK et al (2010) Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiol Plant 32:205–210. https://doi.org/10.1007/s11738-009-0382-4

Aslam M, Grover A, Sinha VB et al (2012) Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. Mol Biol Rep 39:9629–9638. https://doi.org/10.1007/s11033-012-1828-0

Assefa K, Larti S, Chanyalew S et al (2014) Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics 15:581. https://doi.org/10.1186/1471-2164-15-581

Auwal A, Ibrahim JA, Sinha VB (2016) Response of wheat seeds grown under NaCl and ZnCl 2 stress. Res J Sci Technol 8:77. https://doi.org/10.5958/2349-2988.2016.00010.3

Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373. https://doi.org/10.1093/nar/gkl198

Baillo K, Zhang Xu (2019) Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771. https://doi.org/10.3390/genes10100771

Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560. https://doi.org/10.1155/2015/807560

Bateman A (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

Berri S, Abbruscato P, Faivre-Rampant O et al (2009) Characterization of WRKYco-regulatory networks in rice and Arabidopsis. BMC Plant Biol 9:120. https://doi.org/10.1186/1471-2229-9-120

Cannarozzi G, Plaza-Wüthrich S, Esfeld K et al (2014) Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics. https://doi.org/10.1186/1471-2164-15-581

Carballo J, Santos BACM, Zappacosta D et al (2019) A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality. Sci Rep 9:10250. https://doi.org/10.1038/s41598-019-46610-0

Chanyalew S, Ferede S, Damte T, Fikre T, Genet Y, Kebede W, Tolossa K, Tadele Z, Assefa K (2019) Significance and prospects of an orphan crop tef. Planta 250(3):753–767

Chen L, Song Y, Li S et al (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta Gene Regul Mech 1819:120–128. https://doi.org/10.1016/j.bbagrm.2011.09.002

Chen F, Hu Y, Vannozzi A et al (2017) The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci 36:311–335. https://doi.org/10.1080/07352689.2018.1441103

Cheng Y, Yao ZP, Ruan MY et al (2016) In silico identification and characterization of the WRKY gene superfamily in pepper (Capsicum annuum L.). Genet Mol Res 15:1–12. https://doi.org/10.4238/gmr.15038675

Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 2008:619832. https://doi.org/10.1155/2008/619832

Dou L, Zhang X, Pang C et al (2014) Genome-wide analysis of the WRKY gene family in cotton. Mol Genet Genom. https://doi.org/10.1007/s00438-014-0872-y

El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/nar/gky995

Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206. https://doi.org/10.1016/S1360-1385(00)01600-9

Feng ZJ, He GH, Zheng WJ et al (2015) Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses. Front Plant Sci 6:1–19. https://doi.org/10.3389/fpls.2015.01142

Franco-zorrilla JM, López-vidriero I, Carrasco JL et al (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Nat Acad Sci 111:2367–2372. https://doi.org/10.1073/pnas.1316278111

Gasteiger E, Hoogland C, Gattiker A et al (2003) Protein identification and analysis tools on the ExPASy server. In: Walke JM (ed) The proteomics protocols handbook. Humana Press Inc, Totowa, pp 571–608

Giacomelli JI, Ribichich KF, Dezar CA, Chan RL (2010) Expression analyses indicate the involvement of sunflower WRKY transcription factors in stress responses, and phylogenetic reconstructions reveal the existence of a novel clade in the Asteraceae. Plant Sci 178:398–410. https://doi.org/10.1016/j.plantsci.2010.02.008

Gonzalez DH (ed) (2015) Plant transcription factors: evolutionary. Structural and functional aspects, London

Goro MG, Sinha VB (2020) Seed germination responses for varying KNO3 and NaNO3 stress in Trifolium alexandrinum. L Cultivars. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2020.101618

Govardhana M, Kumudini BS (2020) In-silico analysis of cucumber (Cucumis sativus L.) Genome for WRKY transcription factors and cis-acting elements. Comput Biol Chemis 85:107212. https://doi.org/10.1016/j.compbiolchem.2020.107212

Gupta S, Mishra VK, Kumari S et al (2019) Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to Abiotic stress. Genes Genom 41:79–94. https://doi.org/10.1007/s13258-018-0742-9

He G-H, Xu J-Y, Wang Y-X et al (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116. https://doi.org/10.1186/s12870-016-0806-4

Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119. https://doi.org/10.1016/j.plantsci.2013.12.007

Huh SU, Choi LM, Lee G-J et al (2012) Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Sci 197:50–58. https://doi.org/10.1016/j.plantsci.2012.08.013

Ibrahim JA, Auwal A, Sinha VB (2016) Physiological response of wheat seeds grown under NaCl and HgCl2 stress. Int J Sci Rep 2:130. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20161879

Javed T, Shabbir R, Ali A et al (2020) Transcription factors in plant stress responses: challenges and potential for sugarcane improvement. Plants 9:491. https://doi.org/10.3390/plants9040491

Jiang Y, Duan Y, Yin J et al (2014) Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot 65:6629–6644. https://doi.org/10.1093/jxb/eru381

Jiang J, Ma S, Ye N et al (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101. https://doi.org/10.1111/jipb.12513

Jin J, Tian F, Yang D-C et al (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045. https://doi.org/10.1093/nar/gkw982

Kimotho RN, Baillo EH, Zhang Z (2019) Transcription factors involved in abiotic stress responses in Maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ 2019:1–46. https://doi.org/10.7717/peerj.7211

Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evolut 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278. https://doi.org/10.1093/bioinformatics/btu531

Lee H, Cha J, Choi C et al (2018) Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 11:5. https://doi.org/10.1186/s12284-018-0199-0

Lescot M, Déhais P, Thijs G et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. https://doi.org/10.1093/nar/30.1.325

Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260. https://doi.org/10.1093/nar/gku949

Li Z, Hua X, Zhong W et al (2020) Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum. Plant Cell Physiol 61:616–630. https://doi.org/10.1093/pcp/pcz227

Liu Y, Liu N, Deng X et al (2020) Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC Genomics 21:276. https://doi.org/10.1186/s12864-020-6691-0

Lu S, Wang J, Chitsaz F et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268. https://doi.org/10.1093/nar/gkz991

Marchive C, Mzid R, Deluc L et al (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58:1999–2010. https://doi.org/10.1093/jxb/erm062

Mulat MW, Sinha VB (2020) Identification and characterization of Dof in Tef [Eragrostis tef (Zucc.) Trotter] using in silico approaches. Gene Rep 19:100590. https://doi.org/10.1016/j.genrep.2020.100590

Mulat MW, Sinha VB (2020b) First report for availability of HRT-like genes in Eragrostis tef and in silico analysis for elucidating their potential functions. Plant Gene 23:100230. https://doi.org/10.1016/j.plgene.2020.100230

Mulat MW, Sinha VB (2021) Distribution and abundance of CREs in the promoters depicts crosstalk by WRKYs in Tef [Eragrostis tef (Zucc.) Troetter]. Gene Reports 23:101043. https://doi.org/10.1016/j.genrep.2021.101043

Mulat MW, Sinha VB (2022) VOZS identification from TEF [Eragrostis tef (Zucc.) Trotter] using in silico tools decipher their involvement in abiotic stress. Mater Today Proc 49:3357–3364. https://doi.org/10.1016/j.matpr.2021.01.345

Muthamilarasan M, Bonthala VS, Khandelwal R et al (2015) Global analysis of WRKY transcription factor superfamily in setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:1–15. https://doi.org/10.3389/fpls.2015.00910

Ramamoorthy R, Jiang SY, Kumar N et al (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879. https://doi.org/10.1093/pcp/pcn061

Robinson AB, Robinson LR (1991) Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins. Proc Natl Acad Sci USA 88:8880–8884. https://doi.org/10.1073/pnas.88.20.8880

Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258. https://doi.org/10.1016/j.tplants.2010.02.006

Singh A, Singh PK, Sharma AK et al (2019) Understanding the role of the WRKY gene family under stress conditions in pigeonpea (Cajanus Cajan L.). Plants 8:214. https://doi.org/10.3390/plants8070214

Sinha VB, Grover A, Ahmed Z, Pande V (2014a) Isolation and functional characterization of DNA damage repair protein (DRT) from Lepidium latifolium L. CR Biol 337:302–310. https://doi.org/10.1016/j.crvi.2014.03.006

Sinha VB, Grover A, Aslam M et al (2014b) Isolation and characterization of Ras-related GTP-binding protein (Ran) from Lepidium latifolium L. reveals its potential role in regulating abiotic stress tolerance. Acta Physiol Plant 36:2353–2360. https://doi.org/10.1007/s11738-014-1608-7

Sinha VB, Grover A, Singh S et al (2014c) Overexpression of Ran gene from Lepidium latifolium L. (LlaRan) renders transgenic tobacco plants hypersensitive to cold stress. Mol Biol Rep 41:5989–5996. https://doi.org/10.1007/s11033-014-3476-z

Sinha VB, Grover A, Yadav PV, Pande V (2018) Salt and osmotic stress response of tobacco plants overexpressing Lepidium latifolium L. Ran GTPase gene. Indian J Plant Physiol 23:494–498. https://doi.org/10.1007/s40502-018-0396-2

Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937

Tadele Z, Girma D, Kuhlemeier C et al (2014) The origins and progress of genomics research on Tef (Eragrostis tef). Plant Biotechnol J 12:534–540. https://doi.org/10.1111/pbi.12199

Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Plants 239:255–266. https://doi.org/10.1007/s00425-013-1985-y

VanBuren R, Wai CM, Pardo J et al (2019) Exceptional subgenome stability and functional divergence in allotetraploid teff, the primary cereal crop in Ethiopia. https://www.biorxiv.org/content/https://doi.org/10.1101/580720v1. https://doi.org/10.1101/580720

Viana VE, Marini N, Finatto T et al (2017) Iron excess in rice: from phenotypic changes to functional genomics of WRKY transcription factors. Genet Mol Res 16:1–16. https://doi.org/10.4238/gmr16039694

Wang L, Zhu W, Fang L et al (2014) Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol 14:1–14. https://doi.org/10.1186/1471-2229-14-103

Waqas M, Azhar MT, Rana IA et al (2019) Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (Cicer arietinum L.) reveal their role in abiotic stress-responses. Genes and Genomics 41:467–481. https://doi.org/10.1007/s13258-018-00780-9

Wei KF, Chen J, Chen YF et al (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19:153–164. https://doi.org/10.1093/dnares/dsr048

Wen F, Zhu H, Li P et al (2014) Genome-wide evolutionary characterization and expression analyses of WRKY family genes in brachypodium distachyon. DNA Res 21:327–339. https://doi.org/10.1093/dnares/dst060

Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Proteins Struct Funct Bioinform 64:643–651. https://doi.org/10.1002/prot.21018

Zhang C, Wang D, Yang C et al (2017) Genome-wide identification of the potato WRKY transcription factor family. PLoS ONE. https://doi.org/10.1371/journal.pone.0181573

Zhao C, Zayed O, Yu Z et al (2018) Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci 115:13123–13128. https://doi.org/10.1073/pnas.1816991115