Identification of Key Candidate Genes in the Progression of Cervical Cancer: An in Silico Analysis

Indian Journal of Gynecologic Oncology - Tập 20 - Trang 1-8 - 2022
Balraj Sudha1, Kandasamy Swathi1, Kanagaraj Suganya1, Arumugam Poornima1, Nachimuthu Senthil Kumar2, Sundaravadivelu Sumathi1
1Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
2Department of Biotechnology, Mizoram University, Aizawl, India

Tóm tắt

Cervical cancer is one of the most widespread gynaecological tumours in women, and the molecular pathogenesis and chances of recurrence of the illness are still not clear. It is critical to identify new biomarkers to detect cervical cancer sooner to minimize women’s incidence and mortality rates. Differentially expressed genes were screened from the GSE64517 transcriptome profile. A protein–protein interaction network analysis was used to find the hub genes associated with this condition. Experimental data from TCGA cervical cancer patients was used to confirm the statistical significance of important genes. Totally twenty differentially expressed genes were retrieved. Their biological functions, connections, and their expression in cervical cancer were analysed virtually. This study suggested that IGF2BP3 and PTPRZ1 could be targeted for cervical cancer treatment.

Tài liệu tham khảo

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660. Sriharikrishnaa S, Shukla V, Khan GN, Eswaran S, Adiga D, Kabekkodu SP. Integrated bioinformatic analysis of miR-15a/16-1 cluster network in cervical cancer. Reprod Biol. 2021;21(1): 100482. https://doi.org/10.1016/j.repbio.2021.100482. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, Bray F. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8(2):e191-203. https://doi.org/10.1016/S2214-109X(19)30482-6. Tarney CM, Han J. Postcoital bleeding: a review on etiology, diagnosis, and management. Obstet Gynecol Int. 2014;17:2014. https://doi.org/10.1155/2014/192087. Wu J, Zhao Y, Li F, Qiao B. MiR-144-3p: a novel tumor suppressor targeting MAPK6 in cervical cancer. J Physiol Biochem. 2019;75(2):143–52. https://doi.org/10.1007/s13105-019-00681-9. Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393(10167):169–82. https://doi.org/10.1016/S0140-6736(18)32470-X. Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol. 2021;157: 103178. https://doi.org/10.1016/j.critrevonc.2020.103178. Yao S, Liu T. Analysis of differential gene expression caused by cervical intraepithelial neoplasia based on GEO database. Oncol Lett. 2018;15(6):8319–24. https://doi.org/10.3892/ol.2018.8403. Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. In: Nikolsky Y, Bryant J, editors. Protein networks and pathway analysis. UK: Humana Press; 2009. p. 123–40. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS, Lynn DJ. InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res. 2013;41:D1228-33. https://doi.org/10.1093/nar/gks1147. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BV, Varambally S. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58. https://doi.org/10.1016/j.neo.2017.05.002. Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23(7): e27633. https://doi.org/10.2196/27633. Sudhalkar N, Rathod NP, Mathews A, Chopra S, Sriram H, Shrivastava SK, Goda JS. Potential role of cancer stem cells as biomarkers and therapeutic targets in cervical cancer. Cancer Rep. 2019;2(2): e1144. https://doi.org/10.1002/cnr2.1144. Feng D, Lin J, Wang W, Yan K, Liang H, Liang J, Yu H, Ling B. Wnt3a/β-Catenin/CBP activation in the progression of cervical intraepithelial neoplasia. Pathol Oncol Res. 2021. https://doi.org/10.3389/pore.2021.609620. Liu S, Gu L, Wu N, Song J, Yan J, Yang S, Feng Y, Wang Z, Wang L, Zhang Y, Jin Y. Overexpression of DTL enhances cell motility and promotes tumor metastasis in cervical adenocarcinoma by inducing RAC1-JNK-FOXO1 axis. Cell Death Dis. 2021;12(10):1–9. https://doi.org/10.1038/s41419-021-04179-5. Wu B, Xi S. Bioinformatics analysis of differentially expressed genes and pathways in the development of cervical cancer. BMC Cancer. 2021;21(1):1–5. Guo Y, Luo S. miR-140-5p inhibits cervical cancer cell phenotypes via downregulating FEN1 to halt the cell cycle. Mol Med Rep. 2020;22(6):4919–30. https://doi.org/10.3892/mmr.2020.11552. Xia Z, Ouyang D, Li Q, Li M, Zou Q, Li L, Yi W, Zhou E. The expression, functions, interactions and prognostic values of PTPRZ1: a review and bioinformatic analysis. J Cancer. 2019;10(7):1663. https://doi.org/10.7150/jca.28231. Zhu J, Han S. Downregulation of LncRNA DARS-AS1 Inhibits the tumorigenesis of cervical cancer via inhibition of IGF2BP3. Onco Targets Ther. 2021;14:1331. https://doi.org/10.2147/OTT.S274623. Meng K, Rodríguezpeña A, Dimitrov T, Chen W, Yamin M, Noda M. et al. (2000) Pleiotrophin signals increased tyrosine phosphorylation of β-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase β/ζ. In: Proceedings of the national academy of sciences of the United States of America. 97: 2603–8. https://doi.org/10.1073/pnas.020487997 Ma Y, Ye F, Xie X, et al. Significance of PTPRZ1 and CIN85 expression in cervical carcinoma. Arch Gynecol Obstet. 2011;284:699–704. https://doi.org/10.1007/s00404-010-1693-9.