Identification of Envelope Hygrothermal Properties Based on In-situ Sensor Measurements and Stochastic Inverse Methods

Energy Procedia - Tập 78 - Trang 943-948 - 2015
Simon Rouchier1, Monika Woloszyn1, Timea Bejat2
1LOCIE, CNRS-UMR5271, Université de Savoie Campus Scientifique, Savoie Technolac, 73376 Le Bourget-du-Lac Cedex, France
2University Grenoble Alpes, INES, F-73375 Le Bourget du Lac, France CEA, LITEN, Department of Solar Technologies, F-73375 Le Bourget du Lac, France

Tài liệu tham khảo

Evins R. A review of computational optimisation methods applied to sustainable building design. Renew Sust Energ Rev 2013;22:230-245. Chavent G. Nonlinear least squares for inverse problems: theoretical foundations and step-by-step guide for applications. New York: Springer; 2010. Maillet D, Jarny Y, Petit D. Problèmes inverses en diffusion thermique. In : Techniques de l’ingénieur. 2010. Gosselin L, Tye-Gingras M, Mathieu-Potvin F. Review of utilization of genetic algorithms in heat transfer problems. Int J Heat Mass Tran 2009;52:2169-2188. Rouchier S, Woloszyn M, Kedowide Y, Bejat T. Identification of the hygrothemal properties of a building envelope material by the covariance matrix adaptation evolution strategy. J Build Perform Sim; DOI: 10.1080/19401493.2014.996608. Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution stretegies. Evol Comput 2001;9:159-195. Kaipio J.P, Fox C. The Bayesian framework for inverse problems in heat transfer. Heat Transfer Eng 2011;9:718-753. Wang J, Zabars N. A Bayesian inference approach to the inverse heat conduction problem. Int J Heat Mass Tran 2004;47:3927-3941. Beyer H-G, Schwefel H-P. Evolution strategies – a comprehensive introduction. Natural Computing 2002;1:3-52. Fortin F-A, Rainville D, Gardner M-A-G, Parizeau M, Gagné C. DEAP: Evolutionary Algorithms Made Easy. J Mach Learn Res 2012;13:2171-2175. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970;57:97-109.