Identification of CTNNB1 mutations, CTNNB1 amplifications, and an Axin2 splice variant in juvenile angiofibromas
Tóm tắt
Juvenile angiofibromas (JAs) are benign fibro-vascular tumors occurring nearly exclusively in adolescent males. Even less is known about this rare tumor entity, alterations affecting the Wnt-pathway seem to play a pivotal role in tumor biology as activating CTNNB1 mutations have been detected. However, the knowledge of Wnt-pathway changes is still limited. Therefore, we aimed to determine in JAs further insight into Wnt/β-catenin pathway components. In our present study, genetic alterations of the Wnt-pathway members CTNNB1, APC, GSK3β, and Axin2 detected by metaphase comparative genomic hybridization (CGH) were shown to result in elevated transcript levels in the majority of JA samples compared to nasal mucosa stroma (p < 0.001, p = 0.001, p = 0.046, and p = 0.006, respectively). Additionally, amplifications of CTNNB1 were validated by fluorescence in situ hybridization (FISH) and genomic qPCR. Moreover, our mutation analysis detected already known mutations as well as, to the best of our knowledge, mutations and an interstitial deletion of CTNNB1 not described in JAs before. Additionally, a so far unknown transcribed Axin2 splice variant was found, but no further Axin2 mutations. Taken together, our current study supports the importance of aberrant Wnt-signaling as a common event in JAs, most likely by the observed genetic alterations driven by mutations, interstitial deletions but also amplifications of CTNNB1 contributing to the stabilization of β-catenin.
Tài liệu tham khảo
McCombe A, Lund VJ, Howard DJ. Recurrence in juvenile angiofibroma. Rhinology. 1990;28:97–102.
Tewfik TL, Tan AK, al Noury K, Chowdhury K, Tampieri D, Raymond J, et al. Juvenile nasopharyngeal angiofibroma. J Otolaryngol. 1999;28:145–51.
Beham A, Beham-Schmid C, Regauer S, Auböck L, Stammberger H. Nasopharyngeal angiofibroma: true neoplasm or vascular malformation? Adv Anat Pathol. 2000;7:36–46.
Schick B, Urbschat S. New aspects of pathogenesis of juvenile angiofibroma. Hosp Med. 2004;65:269–73.
Ferouz AS, Mohr RM, Paul P. Juvenile nasopharyngeal angiofibroma and familial adenomatous polyposis: an association? Otolaryngol Head Neck Surg. 1995;113:435–9.
Giardiello FM, Hamilton SR, Krush AJ, Offerhaus JA, Booker SV, Petersen GM. Nasopharyngeal angiofibroma in patients with familial adenomatous polyposis. Gastroenterology. 1993;105:1550–2.
Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253:661–5.
Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253:665–9.
Abraham SC, Montgomery EA, Giardiello FM, Wu TT. Frequent beta-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol. 2001;158:1073–8.
Guertl B, Beham A, Zechner R, Stammberger H, Hoefler G. Nasopharyngeal angiofibroma: an APC-gene-associated tumor? Hum Pathol. 2000;31:1411–3.
Rippel C, Plinkert PK, Schick B. Expression of members of the cadherin-/catenin-protein family in juvenile angiofibromas. Laryngorhinootologie. 2003;82:353–7. German.
Zhang PJ, Weber R, Liang HH, Pasha TL, LiVolsi VA. Growth factors and receptors in juvenile nasopharyngeal angiofibroma and nasal polyps: an immunohistochemical study. Arch Pathol Lab Med. 2003;127:1480–4.
Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.
Andrews JC, Fisch U, Valavanis A, Aeppli U, Makek MS. The surgical management of extensive nasopharyngeal angio¬fibromas with the infratemporal fossa approach. Laryngoscope. 1989;99:429–37.
Wendler O, Schäfer R, Schick B. Mast cells and T-lymphocytes in juvenile angiofibromas. Eur Arch Otorhinolaryngol. 2007;264:769–75. German.
Schick B, Wemmert S, Bechtel U, Nicolai P, Hofmann T, Golabek W, et al. Comprehensive genomic analysis identifies MDM2 and AURKA as novel amplified genes in juvenile angiofibromas. Head Neck. 2007;29:479–87.
Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, et al. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 1994;10:231–43.
Gebhart E, Liehr T. Patterns of genomic imbalances in human solid tumors (Review). Int J Oncol. 2000;16:383–99.
Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body axis. Cell. 2009;139:1056–68.
Starlinger V, Wendler O, Gramann M, Schick B. Laminin expression in juvenile angiofibroma indicates vessel's early developmental stage. Acta Otolaryngol. 2007;127:1310–5.
Gramann M, Wendler O, Haeberle L, Schick B. Expression of collagen types I, II and III in juvenile angiofibromas. Cells Tissues Organs. 2009;189:403–9.
Gramann M, Wendler O, Haeberle L, Schick B. Prominent collagen type VI expression in juvenile angiofibromas. Histochem Cell Biol. 2009;131:155–64.
Schick B, Wemmert S, Willnecker V, Dlugaiczyk J, Nicolai P, Siwiec H, et al. Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma. Int J Oncol. 2011;39:1143–51.
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275:1787–90.
Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998;58:1130–4.
Iwao K, Nakamori S, Kameyama M, Imaoka S, Kinoshita M, Fukui T, et al. Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res. 1998;58:1021–6.
Miyoshi Y, Iwao K, Nagasawa Y, Aihara T, Sasaki Y, Imaoka S, et al. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 1998;58:2524–7.
de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A. 1998;95:8847–51.
Murata M, Iwao K, Miyoshi Y, Nagasawa Y, Yabu M, Himeno S, et al. Activation of the beta-catenin gene by interstitial deletions involving exon 3 as an early event in colorectal tumorigenesis. Cancer Lett. 2000;159:73–8.
Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C, et al. beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 2002;62(12):3503–6.
Ebert MP, Fei G, Kahmann S, Müller O, Yu J, Sung JJ, et al. Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis. 2002;23:87–91.
Ebert MP, Yu J, Hoffmann J, Rocco A, Röcken C, Kahmann S, et al. Loss of beta-catenin expression in metastatic gastric cancer. J Clin Oncol. 2003;21:1708–14.
Suriano G, Vrcelj N, Senz J, Ferreira P, Masoudi H, Cox K, et al. beta-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer. Genes Chromosomes Cancer. 2005;42:238–46.
Silveira SM, Custódio Domingues MA, Butugan O, Brentani MM, Rogatto SR. Tumor microenvironmental genomic alterations in juvenile nasopharyngeal angiofibroma. Head Neck. 2012;34:485–92.
Pauli J, Gundelach R, Vanelli-Rees A, Rees G, Campbell C, Dubey S, et al. Juvenile nasopharyngeal angiofibroma: an immunohistochemical characterisation of the stromal cell. Pathology. 2008;40:396–400.
Hart MJ, De los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;8:573–81.
Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, et al. Activation of AXIN2 expression by beta-catenin–T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem. 2002;277:21657–65.
Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280:596–9.
Salahshor S, Woodgett JR. The links between axin and carcinogenesis. J Clin Pathol. 2005;58:225–36.
Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta catenin/TCF signalling. Nat Genet. 2000;26:146–7.