Identification of Blast Resistance QTLs Based on Two Advanced Backcross Populations in Rice

Rice - Tập 13 Số 1 - 2020
Hui Jiang1, Feng Yan1, Lei Qiu1, Guanjun Gao1, Qinglu Zhang1, Yuqing He1
1National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China

Tóm tắt

Abstract Background Rice blast is an economically important and mutable disease of rice. Using host resistance gene to breed resistant varieties has been proven to be the most effective and economical method to control rice blast and new resistance genes or quantitative trait loci (QTLs) are then needed. Results In this study, we constructed two advanced backcross population to mapping blast resistance QTLs. CR071 and QingGuAi3 were as the donor parent to establish two BC3F1 and derived BC3F2 backcross population in the Jin23B background. By challenging the two populations with natural infection in 2011 and 2012, 16 and 13 blast resistance QTLs were identified in Jin23B/CR071 and Jin23B/QingGuAi3 population, respectively. Among Jin23B/CR071 population, 3 major and 13 minor QTLs have explained the phenotypic variation from 3.50% to 34.08% in 2 years. And, among Jin23B/QingGuAi3 population, 2 major and 11 minor QTLs have explained the phenotypic variation from 2.42% to 28.95% in 2 years. Conclusions Sixteen and thirteen blast resistance QTLs were identified in Jin23B/CR071 and Jin23B/QingGuAi3 population, respectively. QTL effect analyses suggested that major and minor QTLs interaction is the genetic basis for durable blast resistance in rice variety CR071 and QingGuAi3.

Từ khóa


Tài liệu tham khảo

Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu JZ, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180(4):2267

Babujee L, Gnanamanickam S (2000) Molecular tools for characterization of rice blast pathogen, Magnaporthe grisea, population and molecular marker-assisted breeding for disease resistance. Curr Sci 78:24–257

Bonman JM (1992) Durable resistance to rice blast disease-environmental influences. Euphytica 63:115–123

Bonman JM, De Dios TIV, Khin MM (1986) Physiologic specialization of Pyricularia oryzae in the Philippines. Plant Dis 70:767–769

Bryan GT, Wu KS, Farrall L, Jia YL, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045

Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genom 12:215–228

Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–965

Eizenga GC, Prasad B, Jackson AK, Jia MH (2013) Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/O. nivara advanced backcross populations. Mol Breed 31(4):889–907

Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

Gao GJ, Li GJ, Bao L, He YQ (2008) Genetic analysis of rice blast resistance and identification of resistance genes throughout all stages in rice. Mol Plant Breed 6(5):825–829 (In Chinese with English abstract)

Hayashi N, Ando I, Imbe T (1998) Identification of a new resistance gene to a Chinese blast fungus isolate in the Japanese rice cultivar Aichi Asahi. Phytopathology 88(8):822–827

Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

Hua LX, Wu JZ, Chen CX, Wu WH, He XY, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan QH (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125(5):1047–1055

Imbe T, Ora S, Yanoria MJT, Tsunematsu H (1997) A new gene for blast resistance in rice cultivar, IR24. Rice Genet Newsl 14:60–62

IRRI (2002) Standard evaluation system for rice (SES). International Rice Research Institute, Los Banos

Jiang HC, Feng YT, Bao L, Li X, Gao GJ, Zhang QL, Xiao JH, Xu CG, He YQ (2012) Improving blast resistance of Jin23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed 30:1679–1688

Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–239

Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

Li YB, Wu CJ, Jiang GH, Wang LQ, He YQ (2007) Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects. Plant Breed 126:541–547

Li YB, Wu CJ, Xing YZ, Chen HL, He YQ (2011) Dynamic QTL analysis for rice blast resistance under natural infection conditions. Aust J Crop Sci 2:73–82

Lin F, Chen S, Que ZQ, Wang L, Liu XQ, Pan QH (2007) The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177(3):1871

Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with MapMaker/EXP3.0

Liu WD, Wang GL (2016) Plant innate immunity in rice: a defense against pathogen infection. Natl Sci Rev 3:295–308

Nguyen TTT, Koizumi S, La TN, Zenbayashi KS, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A (2006) Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet 113:697–704

Pan QH, Wang L, Tanisaka T, Ikehashi H (1998) Allelism of rice blast resistance genes in two Chinese rice cultivars, and identification of two new resistance genes. Plant Pathol 47(2):165–170

Panaud O, Chen X, Mccouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252(5):597–607

Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem JL (2003) Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106:794–803

Sharma TR, Rai AK, Gupta SK, Singh NK (2010) Broad-spectrum blast resistance gene Pi-kh cloned from rice line Tetep designated Pi54. J Plant Biochem Biotechnol 19(1):87–89

Su J, Wang WJ, Han JL, Chen S, Wang CY, Zeng LX, Feng AQ, Yang JY, Zhou B, Zhu XY (2015) Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet 128(11):2213–2225

Tabien E, Li Z, Patterson AH, Marchetti A, Stansel W, Pinson M (2002) Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet 105:313–324

Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10(1):175–0

Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

Vasudevan K, Gruissem W, Bhullar NK (2016) Corrigendum: identification of novel alleles of the rice blast resistance gene Pi54. Sci Rep 6(15678):17920

Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

Wang GL, Valent B (2017) Durable resistance to rice blast. Science 355(6328):906–907

Wang J, Liu X, Zhang A, Yulong Ren WFQ, Wang G, Xu Y, Lei CL, Zhu SS, Pan T, Wang YF, Zhang H, Wang F, Tan YQ, Wang YP, Jin X, Luo S, Zhou CL, Zhang X, Liu JL, Wang S, Meng LZ, Wang YH, Chen X, Lin QB, Zhang X, Guo XP, Cheng ZJ, Wang JL, Tian YL, Liu SJ, Jiang L, Wu CY, Wang ET, Zhou JM, Wang YF, Wang HY, Wan JM (2019) A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res 29:820–831

Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19(1):55–64

Wu JL, Fan YY, Li DB, Zheng KL, Leung H, Zhuang JY (2005) Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet 111:50–56

Wu SQ, Long JS, Yan XM, Li RF (2001) Identification, screening and evaluation of durable resistant sources of rice blast. Hubei Agri Sci 1(18):44–45 (in Chinese)

Xiao N, Wu YY, Pan CH, Yu L, Chen Y, Liu GQ, Li YH, Zhang XX, Wang ZP, Dai ZY, Liang CZ, Li AH (2017) Improving of rice blast resistances in Japonica by pyramiding major R genes. Front Plant Sci 7:1918

Yuan B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122(5):1017–1028

Zhai C, Lin F, Dong Z, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189(1):321–334

Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong ZQ, Wang L, Pan QH (2014) Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One 9(6):e98067

Zhao HJ, Wang XY, Jia YL, Minkenberg B, Wheatley M, Fan J, Jia M, Famoso A, Edwards J, Wamishe Y, Valent B, Wang GL, Yang Y (2018) The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun 9:2039

Zheng WJ, Wang Y, Wang LL, Ma ZB, Zhao JM, Wang P, Zhang LX, Liu ZH, Lu XC (2016) Genetic mapping and molecular marker development for Pi65(t), a novel broad-spectrum resistance gene to rice blast using next-generation sequencing. Theor Appl Genet 129(5):1035–1044

Zhou B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rice repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe In 11:1216–1228

Zhu XY, Chen S, Yang JY, Zhou SC, Zeng LX, Han JL, Su J, Wang L, Pan QH (2012) The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet 124:1295–1304