Identification, characterization, and lipid profiling of microalgae Scenedesmus sp. NC1, isolated from coal mine effluent with potential for biofuel production

Biotechnology Reports - Tập 30 - Trang e00621 - 2021
Niwas Kumar1, Chiranjib Banerjee2, Sheeja Jagadevan1
1Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
2Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India

Tài liệu tham khảo

León-Bañares, 2004, Transgenic microalgae as green cell-factories, Trends Biotechnol., 22, 45, 10.1016/j.tibtech.2003.11.003 Sajjadi, 2018, Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition, Renew. Sustain. Energy Rev., 97, 200, 10.1016/j.rser.2018.07.050 Porto, 2020, Assessing the potential of microalgae for nutrients removal from a landfill leachate using an innovative tubular photobioreactor, Chem. Eng. J. Cheng, 2019, Modification and improvement of microalgae strains for strengthening CO2 fixation from coal-fired flue gas in power plants, Bioresour. Technol., 291, 10.1016/j.biortech.2019.121850 Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001 Mutanda, 2020, Biotechnological applications of microalgal oleaginous compounds: current trends on microalgal bioprocessing of products, Front. Energy Res., 8, 1, 10.3389/fenrg.2020.598803 Fröhlich, 2000, New techniques for isolation of single prokaryotic cells, FEMS Microbiol. Rev., 24, 567, 10.1016/S0168-6445(00)00045-0 Mutanda, 2011, Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production, Bioresour. Technol., 102, 57, 10.1016/j.biortech.2010.06.077 Wang, 2019, Microalgae harvest influences the energy recovery: a case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production, Bioresour. Technol., 286, 121371, 10.1016/j.biortech.2019.121371 Banerjee, 2013, Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant, Carbohydr. Polym., 92, 675, 10.1016/j.carbpol.2012.09.022 Fuad, 2018, Effective use of tannin based natural biopolymer, AFlok-BP1 to harvest marine microalgae Nannochloropsis sp, J. Environ. Chem. Eng., 6, 4318, 10.1016/j.jece.2018.06.041 Kumar, 2019, A novel non-starch based cationic polymer as flocculant for harvesting microalgae, Bioresour. Technol., 271, 383, 10.1016/j.biortech.2018.09.073 Selig, 2008, The ITS2 Database II: homology modelling RNA structure for molecular systematics, Nucleic Acids Res., 36, 377, 10.1093/nar/gkm827 Ankenbrand, 2015, ITS2 database V: twice as much, Mol. Biol. Evol., 32, 3030, 10.1093/molbev/msv174 He, 2012, Isolation of wild microalgae from natural water bodies for high hydrogen producing strains, Int. J. Hydrogen Energy, 37, 4046, 10.1016/j.ijhydene.2011.11.089 Droop, 1967, A procedure for routine purification of algal cultures with antibiotics, Br. Phycol. Bull., 3, 295, 10.1080/00071616700650171 Kumar, 2020, Cationically functionalized dextrin polymer as an efficient flocculant for harvesting microalgae, Energy Rep., 6, 2803, 10.1016/j.egyr.2020.09.040 Piligaev, 2015, Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production, ALGAL., 12, 368, 10.1016/j.algal.2015.08.026 Timmins, 2009, Phylogenetic and molecular analysis of hydrogen-producing green algae, J. Exp. Bot., 60, 1691, 10.1093/jxb/erp052 Keller, 2010, Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees, Biol. Direct, 5, 1, 10.1186/1745-6150-5-4 Seibel, 2008, Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE, BMC Res. Notes, 1, 1, 10.1186/1756-0500-1-91 Buchheim, 2001, Phylogeny of the chlorophyceae with special reference to the Sphaeropleales: a study of 18s and 26s rDNA data, J. Phycol., 37, 819, 10.1046/j.1529-8817.2001.00162.x Kumar, 2018, Molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 35, 1547, 10.1093/molbev/msy096 Zor, 1996, Linearization of the bradford protein assay increases its sensitivity, Anal. Biochem., 308, 302, 10.1006/abio.1996.0171 Byreddy, 2016, A quick colorimetric method for total lipid quantification in microalgae, J. Microbiol, Methods., 125, 28 Bligh, 1959, Can. J. Biochem. Physiol., 37, 10.1139/y59-099 Sciuto, 2015, Chodatodesmus australis sp. nov. (Scenedesmaceae, Chlorophyta) from Antarctica, with the emended description of the genus Chodatodesmus, and circumscription of Flechtneria rotunda gen. et sp. nov, J. Phycol., 51, 1172, 10.1111/jpy.12355 Lei, 2018, Effective harvesting of the marine microalga Thalassiosira pseudonana by Marinobacter sp. FL06, Bioresour. Technol., 269, 127, 10.1016/j.biortech.2018.08.077 Toledo-Cervantes, 2018, Characterization of Scenedesmus obtusiusculus AT-UAM for high-energy molecules accumulation: deeper insight into biotechnological potential of strains of the same species, Biotechnol. Rep. Amst. (Amst), 17, 16 Heeg, 2015, ITS2 and 18S rDNA sequence-structure phylogeny of Chlorella and allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae), Plant Gene, 4, 20, 10.1016/j.plgene.2015.08.001 Caisová, 2013, A consensus secondary structure of ITS2 in the Chlorophyta Identified by phylogenetic reconstruction, Protist., 164, 482, 10.1016/j.protis.2013.04.005 Van Hannen, 2002, A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae, Eur. J. Phycol., 37, 203, 10.1017/S096702620200361X Gutell, 1994, Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective, Microbiol. Rev., 58, 10, 10.1128/mr.58.1.10-26.1994 Müller, 2007, Distinguishing species, Rna., 13, 1469, 10.1261/rna.617107 Coleman, 2009, Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide, Mol. Phylogenet. Evol., 50, 197, 10.1016/j.ympev.2008.10.008 Sharma, 2015, Lipid content in Scenedesmus species correlates with multiple genes of fatty acid and triacylglycerol biosynthetic pathways, Algal Res., 12, 341, 10.1016/j.algal.2015.09.006 Shanmugam, 2020, Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production, Bioresour. Technol., 304, 123061, 10.1016/j.biortech.2020.123061 Ho, 2014, Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions, Bioresour. Technol., 156, 108, 10.1016/j.biortech.2014.01.017 Piligaev, 2015, Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production, Algal Res., 12, 368, 10.1016/j.algal.2015.08.026 Knothe, 2008, “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties, Energy Fuels, 22, 1358, 10.1021/ef700639e Salim, 2013, Effect of growth phase on harvesting characteristics, autoflocculation and lipid content of Ettlia texensis for microalgal biodiesel production, Bioresour. Technol., 138, 214, 10.1016/j.biortech.2013.03.173 Rashid, 2019, Efficient microalgae removal from aqueous medium through auto-flocculation: investigating growth-dependent role of organic matter, Environ. Sci. Pollut. Res., 26, 27396, 10.1007/s11356-019-05904-6 Chen, 2020, Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1, Bioresour. Technol., 302, 122806, 10.1016/j.biortech.2020.122806 de Souza Leite, 2020, Optimization of microalgae harvesting by sedimentation induced by high pH, Water Sci. Technol., 82, 1227, 10.2166/wst.2020.106 Yuan, 2019, Analyzing the effect of pH on microalgae adhesion by identifying the dominant interaction between cell and surface, Colloids Surf. B Biointerfaces, 177, 479, 10.1016/j.colsurfb.2019.02.023 Sheng, 2010, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28, 882, 10.1016/j.biotechadv.2010.08.001 Chen, 2020, Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1, Bioresour. Technol., 302, 122806, 10.1016/j.biortech.2020.122806 Guo, 2013, Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest, Bioresour. Technol., 145, 285, 10.1016/j.biortech.2013.01.120 Wan, 2013, Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation, Bioresour. Technol., 135, 207, 10.1016/j.biortech.2012.10.004 Chatsungnoen, 2019 Salim, 2011, Harvesting of microalgae by bio-flocculation, J. Appl. Phycol., 23, 849, 10.1007/s10811-010-9591-x Lv, 2019, Integration of wastewater treatment and flocculation for harvesting biomass for lipid production by a newly isolated self-flocculating microalga Scenedesmus rubescens SX, J. Clean. Prod., 240, 118211, 10.1016/j.jclepro.2019.118211