Identification, characterization, and lipid profiling of microalgae Scenedesmus sp. NC1, isolated from coal mine effluent with potential for biofuel production
Tài liệu tham khảo
León-Bañares, 2004, Transgenic microalgae as green cell-factories, Trends Biotechnol., 22, 45, 10.1016/j.tibtech.2003.11.003
Sajjadi, 2018, Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition, Renew. Sustain. Energy Rev., 97, 200, 10.1016/j.rser.2018.07.050
Porto, 2020, Assessing the potential of microalgae for nutrients removal from a landfill leachate using an innovative tubular photobioreactor, Chem. Eng. J.
Cheng, 2019, Modification and improvement of microalgae strains for strengthening CO2 fixation from coal-fired flue gas in power plants, Bioresour. Technol., 291, 10.1016/j.biortech.2019.121850
Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001
Mutanda, 2020, Biotechnological applications of microalgal oleaginous compounds: current trends on microalgal bioprocessing of products, Front. Energy Res., 8, 1, 10.3389/fenrg.2020.598803
Fröhlich, 2000, New techniques for isolation of single prokaryotic cells, FEMS Microbiol. Rev., 24, 567, 10.1016/S0168-6445(00)00045-0
Mutanda, 2011, Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production, Bioresour. Technol., 102, 57, 10.1016/j.biortech.2010.06.077
Wang, 2019, Microalgae harvest influences the energy recovery: a case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production, Bioresour. Technol., 286, 121371, 10.1016/j.biortech.2019.121371
Banerjee, 2013, Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant, Carbohydr. Polym., 92, 675, 10.1016/j.carbpol.2012.09.022
Fuad, 2018, Effective use of tannin based natural biopolymer, AFlok-BP1 to harvest marine microalgae Nannochloropsis sp, J. Environ. Chem. Eng., 6, 4318, 10.1016/j.jece.2018.06.041
Kumar, 2019, A novel non-starch based cationic polymer as flocculant for harvesting microalgae, Bioresour. Technol., 271, 383, 10.1016/j.biortech.2018.09.073
Selig, 2008, The ITS2 Database II: homology modelling RNA structure for molecular systematics, Nucleic Acids Res., 36, 377, 10.1093/nar/gkm827
Ankenbrand, 2015, ITS2 database V: twice as much, Mol. Biol. Evol., 32, 3030, 10.1093/molbev/msv174
He, 2012, Isolation of wild microalgae from natural water bodies for high hydrogen producing strains, Int. J. Hydrogen Energy, 37, 4046, 10.1016/j.ijhydene.2011.11.089
Droop, 1967, A procedure for routine purification of algal cultures with antibiotics, Br. Phycol. Bull., 3, 295, 10.1080/00071616700650171
Kumar, 2020, Cationically functionalized dextrin polymer as an efficient flocculant for harvesting microalgae, Energy Rep., 6, 2803, 10.1016/j.egyr.2020.09.040
Piligaev, 2015, Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production, ALGAL., 12, 368, 10.1016/j.algal.2015.08.026
Timmins, 2009, Phylogenetic and molecular analysis of hydrogen-producing green algae, J. Exp. Bot., 60, 1691, 10.1093/jxb/erp052
Keller, 2010, Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees, Biol. Direct, 5, 1, 10.1186/1745-6150-5-4
Seibel, 2008, Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE, BMC Res. Notes, 1, 1, 10.1186/1756-0500-1-91
Buchheim, 2001, Phylogeny of the chlorophyceae with special reference to the Sphaeropleales: a study of 18s and 26s rDNA data, J. Phycol., 37, 819, 10.1046/j.1529-8817.2001.00162.x
Kumar, 2018, Molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 35, 1547, 10.1093/molbev/msy096
Zor, 1996, Linearization of the bradford protein assay increases its sensitivity, Anal. Biochem., 308, 302, 10.1006/abio.1996.0171
Byreddy, 2016, A quick colorimetric method for total lipid quantification in microalgae, J. Microbiol, Methods., 125, 28
Bligh, 1959, Can. J. Biochem. Physiol., 37, 10.1139/y59-099
Sciuto, 2015, Chodatodesmus australis sp. nov. (Scenedesmaceae, Chlorophyta) from Antarctica, with the emended description of the genus Chodatodesmus, and circumscription of Flechtneria rotunda gen. et sp. nov, J. Phycol., 51, 1172, 10.1111/jpy.12355
Lei, 2018, Effective harvesting of the marine microalga Thalassiosira pseudonana by Marinobacter sp. FL06, Bioresour. Technol., 269, 127, 10.1016/j.biortech.2018.08.077
Toledo-Cervantes, 2018, Characterization of Scenedesmus obtusiusculus AT-UAM for high-energy molecules accumulation: deeper insight into biotechnological potential of strains of the same species, Biotechnol. Rep. Amst. (Amst), 17, 16
Heeg, 2015, ITS2 and 18S rDNA sequence-structure phylogeny of Chlorella and allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae), Plant Gene, 4, 20, 10.1016/j.plgene.2015.08.001
Caisová, 2013, A consensus secondary structure of ITS2 in the Chlorophyta Identified by phylogenetic reconstruction, Protist., 164, 482, 10.1016/j.protis.2013.04.005
Van Hannen, 2002, A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae, Eur. J. Phycol., 37, 203, 10.1017/S096702620200361X
Gutell, 1994, Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective, Microbiol. Rev., 58, 10, 10.1128/mr.58.1.10-26.1994
Müller, 2007, Distinguishing species, Rna., 13, 1469, 10.1261/rna.617107
Coleman, 2009, Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide, Mol. Phylogenet. Evol., 50, 197, 10.1016/j.ympev.2008.10.008
Sharma, 2015, Lipid content in Scenedesmus species correlates with multiple genes of fatty acid and triacylglycerol biosynthetic pathways, Algal Res., 12, 341, 10.1016/j.algal.2015.09.006
Shanmugam, 2020, Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production, Bioresour. Technol., 304, 123061, 10.1016/j.biortech.2020.123061
Ho, 2014, Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions, Bioresour. Technol., 156, 108, 10.1016/j.biortech.2014.01.017
Piligaev, 2015, Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production, Algal Res., 12, 368, 10.1016/j.algal.2015.08.026
Knothe, 2008, “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties, Energy Fuels, 22, 1358, 10.1021/ef700639e
Salim, 2013, Effect of growth phase on harvesting characteristics, autoflocculation and lipid content of Ettlia texensis for microalgal biodiesel production, Bioresour. Technol., 138, 214, 10.1016/j.biortech.2013.03.173
Rashid, 2019, Efficient microalgae removal from aqueous medium through auto-flocculation: investigating growth-dependent role of organic matter, Environ. Sci. Pollut. Res., 26, 27396, 10.1007/s11356-019-05904-6
Chen, 2020, Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1, Bioresour. Technol., 302, 122806, 10.1016/j.biortech.2020.122806
de Souza Leite, 2020, Optimization of microalgae harvesting by sedimentation induced by high pH, Water Sci. Technol., 82, 1227, 10.2166/wst.2020.106
Yuan, 2019, Analyzing the effect of pH on microalgae adhesion by identifying the dominant interaction between cell and surface, Colloids Surf. B Biointerfaces, 177, 479, 10.1016/j.colsurfb.2019.02.023
Sheng, 2010, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28, 882, 10.1016/j.biotechadv.2010.08.001
Chen, 2020, Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1, Bioresour. Technol., 302, 122806, 10.1016/j.biortech.2020.122806
Guo, 2013, Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest, Bioresour. Technol., 145, 285, 10.1016/j.biortech.2013.01.120
Wan, 2013, Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation, Bioresour. Technol., 135, 207, 10.1016/j.biortech.2012.10.004
Chatsungnoen, 2019
Salim, 2011, Harvesting of microalgae by bio-flocculation, J. Appl. Phycol., 23, 849, 10.1007/s10811-010-9591-x
Lv, 2019, Integration of wastewater treatment and flocculation for harvesting biomass for lipid production by a newly isolated self-flocculating microalga Scenedesmus rubescens SX, J. Clean. Prod., 240, 118211, 10.1016/j.jclepro.2019.118211