Identification by mass spectrometry and immunoblotting of xenogeneic antigens in the N- and O-glycomes of porcine, bovine and equine heart tissues

Glycoconjugate Journal - Tập 37 - Trang 485-498 - 2020
Chunsheng Jin1, Reeja Maria Cherian2, Jining Liu3, Heribert Playà-Albinyana3,4, Cesare Galli5,6, Niclas G. Karlsson1, Michael E. Breimer2, Jan Holgersson3
1Department of Medical Biochemistry, Institute of Biomedicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
2Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
3Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
4Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rovira i Virgili University, Tarragona, Spain
5Avantea Laboratory of Reproductive Technologies, Cremona, Italy
6Avantea Foundation, Cremona, Italy

Tóm tắt

Animal bioprosthetic heart valves (BHV) are used to replace defective valves in patients with valvular heart disease. Especially young BHV recipients may experience a structural valve deterioration caused by an immune reaction in which α-Gal and Neu5Gc are potential target antigens. The expression of these and other carbohydrate antigens in animal tissues used for production of BHV was explored. Protein lysates of porcine aortic and pulmonary valves, and porcine, bovine and equine pericardia were analyzed by Western blotting using anti-carbohydrate antibodies and lectins. N-glycans were released by PNGase F digestion and O-glycans by β-elimination. Released oligosaccharides were analyzed by liquid chromatography – tandem mass spectrometry. In total, 102 N-glycans and 40 O-glycans were identified in animal heart tissue lysates. The N- and O-glycan patterns were different between species. α-Gal and Neu5Gc were identified on both N- and O-linked glycans, N,N´-diacetyllactosamine (LacdiNAc) on N-glycans only and sulfated O-glycans. The relative amounts of α-Gal-containing N-glycans were higher in bovine compared to equine and porcine pericardia. In contrast to the restricted number of proteins carrying α-Gal and LacdiNAc, the distribution of proteins carrying Neu5Gc-determinants varied between species and between different tissues of the same species. Porcine pericardium carried the highest level of Neu5Gc-sialylated O-glycans, and bovine pericardium the highest level of Neu5Gc-sialylated N-glycans. The identified N- and O-linked glycans, some of which may be immunogenic and remain in BHVs manufactured for clinical use, could direct future genetic engineering to prevent glycan expression rendering the donor tissues less immunogenic in humans.

Tài liệu tham khảo

Siddiqui, R.F., Abraham, J.R., Butany, J.: Bioprosthetic heart valves: modes of failure. Histopathology. 55(2), 135–144 (2009) Manji, R.A., Ekser, B., Menkis, A.H., Cooper, D.K.: Bioprosthetic heart valves of the future. Xenotransplantation. 21(1), 1–10 (2014) Manji, R.A., Lee, W., Cooper, D.K.C.: Xenograft bioprosthetic heart valves: Past, present and future. Int. J. Surg. 23(Pt B), 280–284 (2015) Manji, R.A., Menkis, A.H., Ekser, B., Cooper, D.K.: Porcine bioprosthetic heart valves: The next generation. Am. Heart J. 164(2), 177–185 (2012) Pibarot, P., Dumesnil, J.G.: Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 119(7), 1034–1048 (2009) Carpentier, A., Lemaigre, G., Robert, L., Carpentier, S., et al.: Biological factors affecting long-term results of valvular heterografts. J. Thorac. Cardiovasc. Surg. 58(4), 467–483 (1969) Dahm, M., Husmann, M., Eckhard, M., Prufer, D., et al.: Relevance of immunologic reactions for tissue failure of bioprosthetic heart valves. Ann. Thorac. Surg. 60(2 Suppl), S348–S352 (1995) Lee, W., Long, C., Ramsoondar, J., Ayares, D., et al.: Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation. 23(5), 370–380 (2016) Amon, R., Reuven, E.M., Leviatan Ben-Arye, S., Padler-Karavani, V.: Glycans in immune recognition and response. Carbohydr. Res. 389, 115–122 (2014) Ezzelarab, M., Ayares, D., Cooper, D.K.: Carbohydrates in xenotransplantation. Immunol. Cell Biol. 83(4), 396–404 (2005) Cooper, D.K., Koren, E., Oriol, R.: Oligosaccharides and discordant xenotransplantation. Immunol. Rev. 141, 31–58 (1994) Huai, G., Qi, P., Yang, H., Wang, Y.: Characteristics of alpha-Gal epitope, anti-Gal antibody, alpha1,3 galactosyltransferase and its clinical exploitation. Int. J. Mol. Med. 37(1), 11–20 (2016) Konakci, K.Z., Bohle, B., Blumer, R., Hoetzenecker, W., et al.: Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. Eur. J. Clin. Investig. 35(1), 17–23 (2005) Naso, F., Gandaglia, A., Bottio, T., Tarzia, V., et al.: First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation. 20(4), 252–261 (2013) Lila, N., McGregor, C.G., Carpentier, S., Rancic, J., et al.: Gal knockout pig pericardium: new source of material for heart valve bioprostheses. J. Heart Lung Transplant. 29(5), 538–543 (2010) Varki, A.: Multiple changes in sialic acid biology during human evolution. Glycoconj. J. 26(3), 231–245 (2009) Jeong, H.J., Adhya, M., Park, H.M., Kim, Y.G., et al.: Detection of Hanganutziu-Deicher antigens in O-glycans from pig heart tissues by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Xenotransplantation. 20(6), 407–417 (2013) Lee, W., Hara, H., Cooper, D.K., Manji, R.A.: Expression of NeuGc on pig heart valves. Xenotransplantation. 22(2), 153–154 (2015) Reuven, E.M., Leviatan Ben-Arye, S., Marshanski, T., Breimer, M.E., et al.: Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation. 23(5), 381–392 (2016) Barone, A., Benktander, J., Whiddon, C., Jin, C., et al.: Glycosphingolipids of porcine, bovine, and equine pericardia as potential immune targets in bioprosthetic heart valve grafts. Xenotransplantation. 25(5), e12406 (2018) Barone, A., Benktander, J., Teneberg, S., Breimer, M.E.: Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts. Xenotransplantation. 21(6), 510–522 (2014) Cooper, D.K.: Xenoantigens and xenoantibodies. Xenotransplantation. 5(1), 6–17 (1998) Liu, J., Holgersson, J.: Recombinant Galalpha1,3Gal-substituted mucin/immunoglobulin chimeras: a superior absorber of anti-pig antibodies. Transplant. Proc. 32(5), 859 (2000) Liu, J., Gustafsson, A., Breimer, M.E., Kussak, A., et al.: Anti-pig antibody adsorption efficacy of {alpha}-Gal carrying recombinant P-selectin glycoprotein ligand-1/immunoglobulin chimeras increases with core 2 {beta}1, 6-N-acetylglucosaminyltransferase expression. Glycobiology. 15(6), 571–583 (2005) Liu, J., Weintraub, A., Holgersson, J.: Multivalent Galalpha1,3Gal-substitution makes recombinant mucin-immunoglobulins efficient absorbers of anti-pig antibodies. Xenotransplantation. 10(2), 149–163 (2003) Lofling, J., Diswall, M., Eriksson, S., Boren, T., et al.: Studies of Lewis antigens and H. pylori adhesion in CHO cell lines engineered to express Lewis b determinants. Glycobiology. 18(7), 494–501 (2008) Liu, J., Jin, C., Cherian, R.M., Karlsson, N.G., et al.: O-glycan repertoires on a mucin-type reporter protein expressed in CHO cell pools transiently transfected with O-glycan core enzyme cDNAs. J. Biotechnol. 199, 77–89 (2015) Cherian, R.M., Jin, C., Liu, J., Karlsson, N.G., et al.: A Panel of Recombinant Mucins Carrying a Repertoire of Sialylated O-Glycans Based on Different Core Chains for Studies of Glycan Binding Proteins. Biomolecules. 5(3), 1810–1831 (2015) Jensen, P.H., Karlsson, N.G., Kolarich, D., Packer, N.H.: Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7(7), 1299–1310 (2012) Schulz, B.L., Packer, N.H., Karlsson, N.G.: Small-scale analysis of O-linked oligosaccharides from glycoproteins and mucins separated by gel electrophoresis. Anal. Chem. 74(23), 6088–6097 (2002) Everest-Dass, A.V., Abrahams, J.L., Kolarich, D., Packer, N.H., et al.: Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J. Am. Soc. Mass Spectrom. 24(6), 895–906 (2013) Choi, S.Y., Jeong, H.J., Lim, H.G., Park, S.S., et al.: Elimination of alpha-gal xenoreactive epitope: alpha-galactosidase treatment of porcine heart valves. J. Heart Valve Dis. 21(3), 387–397 (2012) Thomsson, K.A., Holmen-Larsson, J.M., Angstrom, J., Johansson, M.E., et al.: Detailed O-glycomics of the Muc2 mucin from colon of wild-type, core 1- and core 3-transferase-deficient mice highlights differences compared with human MUC2. Glycobiology. 22(8), 1128–1139 (2012) Gock, H., Nottle, M., Lew, A.M., d'Apice, A.J., et al.: Genetic modification of pigs for solid organ xenotransplantation. Transplant Rev. (Orlando). 25(1), 9–20 (2011) Butler, J.R., Martens, G.R., Estrada, J.L., Reyes, L.M., et al.: Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation. Transgenic Res. 25(5), 751–759 (2016) Le Bas-Bernardet, S., Anegon, I., Blancho, G.: Progress and prospects: genetic engineering in xenotransplantation. Gene Ther. 15(18), 1247–1256 (2008) Klymiuk, N., Aigner, B., Brem, G., Wolf, E.: Genetic modification of pigs as organ donors for xenotransplantation. Mol. Reprod. Dev. 77(3), 209–221 (2010) Holgersson, J., Rydberg, L., Breimer, M.E.: Molecular deciphering of the ABO system as a basis for novel diagnostics and therapeutics in ABO incompatible transplantation. Int. Rev. Immunol. 33(3), 174–194 (2014) Gustafsson, A., Holgersson, J.: A new generation of carbohydrate-based therapeutics: recombinant mucin-type fusion proteins as versatile inhibitors of protein-carbohydrate interactions. Expert Opin. Drug Discovery. 1(2), 161–178 (2006) Lofling, J., Holgersson, J.: Core saccharide dependence of sialyl Lewis X biosynthesis. Glycoconj. J. 26(1), 33–40 (2009) Byrne, G.W., Du, Z., Stalboerger, P., Kogelberg, H., et al.: Cloning and expression of porcine beta1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation. 21(6), 543–554 (2014) Estrada, J.L., Martens, G., Li, P., Adams, A., et al.: Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation. 22(3), 194–202 (2015) Malagolini, N., Dall'Olio, F., Guerrini, S., Serafini-Cessi, F.: Identification and characterization of the Sda beta 1,4,N-acetylgalactosaminyltransferase from pig large intestine. Glycoconj. J. 11(2), 89–95 (1994) Sato, T., Gotoh, M., Kiyohara, K., Akashima, T., et al.: Differential roles of two N-acetylgalactosaminyltransferases, CSGalNAcT-1, and a novel enzyme, CSGalNAcT-2. Initiation and elongation in synthesis of chondroitin sulfate. J. Biol. Chem. 278(5), 3063–3071 (2003) Klisch, K., Contreras, D.A., Sun, X., Brehm, R., et al.: The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama. Reproduction. 142(5), 667–674 (2011) Kenny, D.T., Skoog, E.C., Linden, S.K., Struwe, W.B., et al.: Presence of terminal N-acetylgalactosaminebeta1-4N-acetylglucosamine residues on O-linked oligosaccharides from gastric MUC5AC: involvement in Helicobacter pylori colonization? Glycobiology. 22(8), 1077–1085 (2012) Yeh, P., Ezzelarab, M., Bovin, N., Hara, H., et al.: Investigation of potential carbohydrate antigen targets for human and baboon antibodies. Xenotransplantation. 17(3), 197–206 (2010) Wu, G.D., Fujii, G., Johnson, E., Swensson, J., et al.: Failure of anti-Forssman antibodies to induce rejection of mouse heart xenografts. Xenotransplantation. 6(2), 90–97 (1999) Sadahira, Y., Yasuda, T., Kimoto, T.: Regulation of Forssman antigen expression during maturation of mouse stromal macrophages in haematopoietic foci. Immunology. 73(4), 498–504 (1991) Leduc, E.H., Tanaka, N.: A study of the cellular distribution of Forssman antigen in various species. J. Immunol. 77(3), 198–212 (1956) Brockhausen, I.: Sulphotransferases acting on mucin-type oligosaccharides. Biochem. Soc. Trans. 31(2), 318–325 (2003) Galustian, C., Lubineau, A., le Narvor, C., Kiso, M., et al.: L-selectin interactions with novel mono- and multisulfated Lewisx sequences in comparison with the potent ligand 3'-sulfated Lewisa. J. Biol. Chem. 274(26), 18213–18217 (1999) Mitsuoka, C., Sawada-Kasugai, M., Ando-Furui, K., Izawa, M., et al.: Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis X. J. Biol. Chem. 273(18), 11225–11233 (1998) Muthana, S.M., Gildersleeve, J.C.: Factors Affecting Anti-Glycan IgG and IgM Repertoires in Human Serum. Sci. Rep. 6, 19509 (2016) Manzella, S.M., Dharmesh, S.M., Cohick, C.B., Soares, M.J., et al.: Developmental regulation of a pregnancy-specific oligosaccharide structure, NeuAcalpha2,6GalNAcbeta1,4GlcNAc, on select members of the rat placental prolactin family. J. Biol. Chem. 272(8), 4775–4782 (1997) Coddeville, B., Strecker, G., Wieruszeski, J.M., Vliegenthart, J.F., et al.: Heterogeneity of bovine lactotransferrin glycans. Characterization of alpha-D-Galp-(1-->3)-beta-D-Gal- and alpha-NeuAc-(2-->6)-beta-D-GalpNAc-(1-->4)- beta-D-GlcNAc-substituted N-linked glycans. Carbohydr. Res. 236, 145–164 (1992)