Identification and quantification of selected metabolites in differently pigmented leaves of lettuce (Lactuca sativa L.) cultivars harvested at mature and bolting stages

Kijong Lee1, Sung Hyun Choi1, Jae-Eun Lee1, Jung-Sook Sung1, On-Sook Hur1, Na-Young Ro1, Ho-Sun Lee1, Suk-Woo Jang2, Ju-Hee Rhee1
1National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
2Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA, Wanju, 55365, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kim DE, Shang X, Assefa AD et al (2018) Metabolite profiling of green, green/red, and red lettuce cultivars: variation in health beneficial compounds and antioxidant potential. Food Res Int 105:361–370

Touliatos D, Dodd IC, Mcainsh M (2016) Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur 5:184–191

Seo MW, Yang DS, Kays SJ et al (2009) Sesquiterpene lactones and bitterness in korean leaf lettuce cultivars. HortScience 44:246–249

Gazula A, Kleinhenz MD, Scheerens JC, Ling PP (2007) Anthocyanin levels in nine lettuce (Lactuca sativa) cultivars: influence of planting date and relations among analytic, instrumented, and visual assessments of color. HortScience 42:232–238

Llorach R, Martínez-Sánchez A, Tomás-Barberán FA et al (2008) Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem 108:1028–1038

Pérez-López U, Pinzino C, Quartacci MF et al (2014) Phenolic composition and related antioxidant properties in differently colored lettuces: a study by Electron Paramagnetic Resonance (EPR) kinetics. J Agric Food Chem 62:12001–12007

Ribas-Agustí A, Gratacós-Cubarsí M, Sárraga C et al (2011) Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by Ultra-high-performance Liquid Chromatography with photodiode array and mass spectrometry detection. Phytochem Anal 22:555–563

Lopez A, Javier G-A, Fenoll J et al (2014) Chemical composition and antioxidant capacity of lettuce: comparative study of regular-sized (Romaine) and baby-sized (Little Gem and Mini Romaine) types. J Food Compos Anal 33:39–48

Tamaki H, Robinson RW, Anderson JL, Stoewsand GS (1995) Sesquiterpene lactones in virus-resistant lettuce. J Agric Food Chem 43:6–8

Chon SU, Jang HG, Kim DK et al (2005) Allelopathic potential in lettuce (Lactuca sativa L.) plants. Sci Hortic (Amsterdam) 106:309–317

Pernice R, Scuderi D, Napolitano A et al (2007) Polyphenol composition and qualitative characteristics of fresh-cut lettuce in relation to cultivar, mulching, and storage. J Hortic Sci Biotechnol 82:420–427

Ferreres F, Gil MI, Castan M, Tomas-Barberan FA (1997) Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. J Agric Food Chem 45:4249–4254

Bunning ML, Kendall PA, Stone MB et al (2010) Effects of seasonal variation on sensory properties and total phenolic content of 5 lettuce cultivars. J Food Sci 75:156–161

Gazula A, Kleinhenz MD, Streeter JG, Miller AR (2005) Temperature and cultivar effects on anthocyanin and chlorophyll b concentrations in three related lollo rosso lettuce cultivars. HortScience 40:1731–1733

Arakawa K, Minami M, Nakamura K et al (2009) Differences of sesquiterpene lactones content in different leaf parts and head formation stages in lettuce. Hortic Res 8:13–17

Yang X, Wei S, Liu B et al (2018) A novel integrated non-targeted metabolomic analysis reveals signi fi cant metabolite variations between different lettuce (Lactuca sativa L.) varieties. Hortic Res 5:1–14

Viacava GE, Gonzalez-Aguilar G, Roura SI (2014) Determination of phytochemicals and antioxidant activity in butterhead lettuce related to leaf age and position. J Food Biochem 38:352–362

Marin A, Ferreres F, Barbera GG, Gil MI (2015) Weather variability influences color and phenolic content of pigmented baby leaf lettuces throughout the season. J Agric Food Chem 63:1673–1681

Santos J, Oliveira MBPP, Ibanez E, Herrero M (2014) Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. J Chromatogr A 1327:118–131

Price KR, DuPont MS, Shepherd R et al (1990) Relationship between the chemical and sensory properties of exotic salad crops-coloured lettuce (Lactuca sativa) and chicory (Cichorium intybus). J Sci Food Agric 53:185–192

Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

Assefa AD, Keum YS (2017) Effect of extraction solvent and various drying methods on polyphenol content and antioxidant activities of yuzu (Citrus junos Sieb ex Tanaka). J Food Meas Charact 11:576–585

Viacava GE, Roura SI, Berrueta LA et al (2017) Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode. J Mass Spectrom 52:873–902

Hausler M, Ganzera M, Abel G et al (2002) Determination of caffeoylquinic acids and flavonoids in Cynara scolymus L. by High Performance Liquid Chromatography. Chromatographia 56:407–411

Schutz K, Kammerer D, Carle R, Schieber A (2004) Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MSn. J Agric Food Chem 52:4090–4096

Clifford MN, Zheng W, Kuhnert N (2006) Profiling the chlorogenic acids of aster by HPLC-MSn. Phytochem Anal 17:384–393

Lin long Z, Harnly JM (2008) Identification of hydroxycinnamoylquinic acids of arnica flowers and burdock roots using a standardized LC-DAD-ESI/MS profiling method. J Agric Food Chem 56:10105–10114

Jaiswal R, Sovdat T, Vivan F, Kuhnert N (2010) Profiling and characterization by LC-MSn of the chlorogenic acids and hydroxycinnamoylshikimate esters in mate (Ilex paraguariensis). J Agric Food Chem 58:5471–5484

Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem 51:2900–2911

Pepe G, Sommella E, Manfra M et al (2015) Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; Var. Maravilla de Verano). Food Chem 167:153–161

Heimler D, Isolani L, Vignolini P et al (2007) Polyphenol content and antioxidative activity in some species of freshly consumed salads. J Agric Food Chem 55:1724–1729

Lech K, Witko K, Jarosz M (2014) HPLC-UV-ESI MS/MS identification of the color constituents of sawwort (Serratula tinctoria L.). Anal Bioanal Chem 406:3703–3708

Abu-reidah IM, Contreras MM, Arráez-román D (2013) Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J Chromatogr A 1313:212–227

Dupont MS, Mondin Z, Williamson G, Price KR (2000) Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce and endive. J Agric Food Chem 48:3957–3964

Chon SU, Boo HO, Heo BG, Gorinstein S (2012) Anthocyanin content and the activities of polyphenol oxidase, peroxidase and phenylalanine ammonia-lyase in lettuce cultivars. Int J Food Sci Nutr 63:45–48

Wu X, Gu L, Prior RL et al (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 5:7846–7856

De Pascual-Teresa S, Sanchez-Ballesta MT (2008) Anthocyanins: from plant to health. Phytochem Rev 7:281–299

Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873

Graziani G, Ferracane R, Sambo P et al (2015) Profiling chicory sesquiterpene lactones by high resolution mass spectrometry. Food Res Int 67:193–198

Beharav A, Ben-David R, Malarz J et al (2010) Variation of sesquiterpene lactones in Lactuca aculeata natural populations from Israel, Jordan and Turkey. Biochem Syst Ecol 38:602–611

Ferioli F, Manco MA, Antuono LFD (2015) Variation of sesquiterpene lactones and phenolics in chicory and endive germplasm. J Food Compos Anal 39:77–86

Chou JC, Mullin CA (1993) Phenologic and tissue distribution of sesquiterpene lactones in cultivated sunflower (Helianthus annuus L.). J Plant Physiol 142:657–663

Douglas JA, Smallfield BM, Burgess EJ et al (2004) Sesquiterpene lactones in Arnica montana: a rapid analytical method and the effects of flower maturity and simulated mechanical harvesting on quality and yield. Planta Med 70:166–170

Pollard J, Kirk SFL, Cade JE (2002) Factors affecting food choice in relation to fruit and vegetable intake: a review. Nutr Res Rev 15:373

Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805

Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11:419–421

Pandjaitan N, Howard LR, Morelock T, Gil MI (2005) Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J Agric Food Chem 53:8618–8623

Zhao X, Iwamoto T, Carey EE (2007) Antioxidant capacity of leafy vegetables as affected by high tunnel environment, fertilisation and growth stage. J Sci Agric 87:2692–2699