Identification and quantification of anomalies in environmental gamma dose rate time series using artificial intelligence
Tài liệu tham khảo
Alamaniotis, 2012, Optimal assembly of support vector regressors with application to system monitoring, Int. J. Artif. Intell. Tool., 21
Alamaniotis, 2013, Neuro-SVM anticipatory system for online monitoring of radiation and abrupt change detection, Int. J. Monit. Surveill. Technol. Res., 1, 40
Alamaniotis, 2015, Anomaly detection in radiation signals using kernel machine intelligence
Ali, 2019, Clustering and classification for time series data in visual analytics: a survey, IEEE Access, 7, 181314, 10.1109/ACCESS.2019.2958551
Angiulli, 2007, Detecting distance-based outliers in streams of data
Angiulli, 2010, Distance-based outlier queries in data streams: the novel task and algorithms, Data Min. Knowl. Discov., 20, 290, 10.1007/s10618-009-0159-9
Athanasopoulos, 2008, Modelling and forecasting australian domestic tourism, Tourism Manag., 29, 19, 10.1016/j.tourman.2007.04.009
Benito, 2018, Surveillance of environmental dose rate with the covariance matrix, Radiat. Protect. Dosim., 184, 230, 10.1093/rpd/ncy204
Bilici, 2018, Forecasting of ra(226), th(232) and u(238) concentrations using artificial neural networks (ANNs), Cumhuriyet Science Journal, 87, 10.17776/csj.359924
Bishop, 2019
Blázquez-García, 2021, A review on outlier/anomaly detection in time series data, ACM Comput. Surv., 54
Bontempi, 2013, Machine learning strategies for time series forecasting, 62
Bossew, 2017, Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate, J. Environ. Radioact., 166, 296, 10.1016/j.jenvrad.2016.02.013
Bottardi, 2020, Rain rate and radon daughters' activity, Atmos. Environ., 238, 10.1016/j.atmosenv.2020.117728
Branch, 1999, A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems, SIAM J. Sci. Comput., 21, 1, 10.1137/S1064827595289108
Brennan, 2005, Radioactive source detection by sensor networks, IEEE Trans. Nucl. Sci., 52, 813, 10.1109/TNS.2005.850487
Brown, 1956
Brown, 1959
Brownlee, 2018
Burnaev
Carter, 2012, Probabilistic reasoning for streaming anomaly detection
Chandola, 2009, Anomaly detection: a survey, ACM Comput. Surv., 41, 10.1145/1541880.1541882
Chandola, 2012, Anomaly detection for discrete sequences: a survey, IEEE Trans. Knowl. Data Eng., 24, 823, 10.1109/TKDE.2010.235
Chau, 2018, Discord discovery in streaming time series based on an improved HOT SAX algorithm
Chen, 2011, Energy outlier detection in smart environments, 9
Cleveland, 1990, Stl: a seasonal-trend decomposition procedure based on loess, J. Off. Stat., 6, 3
Dhawal, 2013, Neural network algorithms for using radon emanations as an earthquake precursor, Global J. Comput. Sci. Technol.
Fehlau, 1986
Feng, 2011, Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification, Atmos. Environ., 45, 1979, 10.1016/j.atmosenv.2011.01.022
Feng, 2019, Recurrent neural network and random forest for analysis and accurate forecast of atmospheric pollutants: a case study in hangzhou, China, J. Clean. Prod., 231, 1005, 10.1016/j.jclepro.2019.05.319
Fisher, 1928, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Math. Proc. Camb. Phil. Soc., 24, 180, 10.1017/S0305004100015681
Gaffney, 1994, Measurements of 7be and 210pb in rain, snow, and hail, J. Appl. Meteorol., 33, 869, 10.1175/1520-0450(1994)033<0869:MOAIRS>2.0.CO;2
Gama, 2014, A survey on concept drift adaptation, ACM Comput. Surv., 46, 1, 10.1145/2523813
Gnedenko, 1943, Sur la distribution limite du terme maximum d’une serie aleatoire, Ann. Math., 44, 423, 10.2307/1968974
Goldstein, 2012
Greff, 2017, LSTM: a search space odyssey, IEEE Transact. Neural Networks Learn. Syst., 28, 2222, 10.1109/TNNLS.2016.2582924
Ha, 2015, Enhanced radial basis function neural networks for ozone level estimation, Neurocomputing, 155, 62, 10.1016/j.neucom.2014.12.048
Holešovský, 2018, Semiparametric outlier detection in nonstationary times series: case study for atmospheric pollution in brno, Czech republic, Atmos. Pollut. Res., 9, 27, 10.1016/j.apr.2017.06.005
Holt, 2004, Forecasting seasonals and trends by exponentially weighted moving averages, Int. J. Forecast., 20, 5, 10.1016/j.ijforecast.2003.09.015
Huang, 2018, A correlation study of continuously monitored gamma dose rate and meteorological conditions, J. Environ. Radioact., 192, 467, 10.1016/j.jenvrad.2018.07.021
Hyndman
Hyndman, 2008
III, 1975, Statistical inference using extreme order statistics, Ann. Stat., 3, 10.1214/aos/1176343003
2020. Informationen zur interpretation von odl-messergebnissen. Internet. URL: https://odlinfo.bfs.de/DE/themen/wie-wird-gemessen/interpretation.html.
Jeong, 2016, Analysis of dynamic radiation level changes using surface networks
Jones, 2016, Exemplar learning for extremely efficient anomaly detection in real-valued time series, Data Min. Knowl. Discov., 30, 1427, 10.1007/s10618-015-0449-3
Kamışlıoğlu, 2018, Chaotic correlation dimension analysis of 222rn gas measurements received from soil, Arabian J. Geosci., 11, 10.1007/s12517-018-3672-6
Karkare
Keogh, 2005, Clustering of time-series subsequences is meaningless: implications for previous and future research, Knowl. Inf. Syst., 8, 154, 10.1007/s10115-004-0172-7
Keogh, E., Lin, J., Fu, A., 2005. Hot-sax: Efficiently finding the most unusual time series subsequence, in: Fifth IEEE International Conference on Data Mining (ICDM’05), IEEE. doi:10.1109/icdm.2005.79.
Kimura, 1950, Temperature effect in geiger-müller counters, Phys. Rev., 80, 761, 10.1103/PhysRev.80.761.2
Kingma
Külahcı, 2009, Artificial neural network model for earthquake prediction with radon monitoring, Appl. Radiat. Isot., 67, 212, 10.1016/j.apradiso.2008.08.003
Kumar, 2020, Advances in gamma radiation detection systems for emergency radiation monitoring, Nucl. Eng. Technol., 52, 2151, 10.1016/j.net.2020.03.014
Kumar, 2020, Advances in detection algorithms for radiation monitoring, J. Environ. Radioact., 217
Kurt, 2008, An online air pollution forecasting system using neural networks, Environ. Int., 34, 592, 10.1016/j.envint.2007.12.020
Liu, 2019, Prediction of weather induced background radiation fluctuation with recurrent neural networks, Radiat. Phys. Chem., 155, 275, 10.1016/j.radphyschem.2018.03.005
Lin
Liu, 2018, Spatial-temporal modeling of background radiation using mobile sensor networks, PLoS One, 13
Liu, 2020, Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: a machine learning approach, Environ. Int., 142, 10.1016/j.envint.2020.105823
Livesay, 2014, Rain-induced increase in background radiation detected by radiation portal monitors, J. Environ. Radioact., 137, 137, 10.1016/j.jenvrad.2014.07.010
Makridakis, 2000, The m3-competition: results, conclusions and implications, Int. J. Forecast., 16, 451, 10.1016/S0169-2070(00)00057-1
Makridakis, 2018, Statistical and machine learning forecasting methods: concerns and ways forward, PLoS One, 13, 10.1371/journal.pone.0194889
Manohar, 2013, Radon flux maps for The Netherlands and europe using terrestrial gamma radiation derived from soil radionuclides, Atmos. Environ., 81, 399, 10.1016/j.atmosenv.2013.09.005
Mayr, 2021
Mercier, 2009, Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass, J. Environ. Radioact., 100, 527, 10.1016/j.jenvrad.2009.03.002
Malhotra, 2016, Lstm-based encoder-decoder for multi-sensor anomaly detection, 2016
Minh, C.P., Minh, D.B., Tuan, A.D., 2018. Discord detection in streaming time series with the support of r-tree, in: 2018 International Conference on Advanced Computing and Applications (ACOMP), IEEE. doi:10.1109/acomp.2018.00023.
Moore, 2019, An application of CNNs to time sequenced one dimensional data in radiation detection
Negarestani, 2002, Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction, J. Environ. Radioact., 62, 225, 10.1016/S0265-931X(01)00165-5
Negarestani, 2003, Estimation of the radon concentration in soil related to the environmental parameters by a modified adaline neural network, Appl. Radiat. Isot., 58, 269, 10.1016/S0969-8043(02)00304-4
Otto, 2019, Response of photon dosimeters and survey instruments to new operational quantities proposed by ICRU rc26, J. Instrum., 14, 10.1088/1748-0221/14/01/P01010
Parmezan, 2019, Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model, Inf. Sci., 484, 302, 10.1016/j.ins.2019.01.076
Peter, 2018, Anomaly detection by robust statistics, WIREs Data Min. Knowl. Discov., 8
Rafique, 2020, Delegated regressor, a robust approach for automated anomaly detection in the soil radon time series data, Sci. Rep., 10, 10.1038/s41598-020-59881-9
Ramadan, 2012, New environmental prediction model using fuzzy logic and neural networks, Int. J. Comput. Sci. Issue, 9, 309
Raskob, 2011, JRODOS: platform for improved long term countermeasures modelling and management, Radioprotection, 46, S731, 10.1051/radiopro/20116865s
Reddy, 2017, Using Gaussian mixture models to detect outliers in seasonal univariate network traffic
Rigol-Sanchez, 2005, Spatial interpolation of natural radiation levels with prior information using back-propagation artificial neural networks, Appl. GIS, 1, 10.2104/ag050018
Robbins, 1951, A stochastic approximation method, Ann. Math. Stat., 22, 400, 10.1214/aoms/1177729586
Ruiz-Suárez, 1995, Short-term ozone forecasting by artificial neural networks, Adv. Eng. Software, 23, 143, 10.1016/0965-9978(95)00076-3
Sangiorgi, 2020, The european radiological data exchange platform (EURDEP): 25 years of monitoring data exchange, Earth Syst. Sci. Data, 12, 109, 10.5194/essd-12-109-2020
Shebell, 1996, Analysis of eighteen years of environmental radiation monitoring data, Environ. Int., 22, 75, 10.1016/S0160-4120(96)00092-X
Siffer, 2017, Anomaly detection in streams with extreme value theory
Singh, 2017, Time series analysis of soil radon data using multiple linear regression and artificial neural network in seismic precursory studies, Pure Appl. Geophys., 174, 2793, 10.1007/s00024-017-1556-4
Smetsers, 1997, A dynamic compensation method for natural ambient dose rate based on 6 years data from the Dutch radioactivity monitoring network, Radiat. Protect. Dosim., 69, 19, 10.1093/oxfordjournals.rpd.a031883
Stöhlker, 2018, The German dose rate monitoring network and implemented data harmonization techniques, Radiat. Protect. Dosim., 183, 405, 10.1093/rpd/ncy154
Szabó, 2017, Spatial analysis of ambient gamma dose equivalent rate data by means of digital image processing techniques, J. Environ. Radioact., 166, 309, 10.1016/j.jenvrad.2016.07.013
Tareen, 2019, Automated anomalous behaviour detection in soil radon gas prior to earthquakes using computational intelligence techniques, J. Environ. Radioact., 203, 48, 10.1016/j.jenvrad.2019.03.003
Tsymbal
Unterreitmeier, 2021
Voltaggio, 2011, Radon progeny in hydrometeors at the earth's surface, Radiat. Protect. Dosim., 150, 334, 10.1093/rpd/ncr402
Weigl
Winters, 1960, Forecasting sales by exponentially weighted moving averages, Manag. Sci., 6, 324, 10.1287/mnsc.6.3.324
Wissmann, 2005, Variations observed in environmental radiation at ground level, Radiat. Protect. Dosim., 118, 3, 10.1093/rpd/nci317
Wissmann, 2005, Radiation exposure at ground level by secondary cosmic radiation, Radiat. Meas., 39, 95, 10.1016/j.radmeas.2004.03.025
Zaremba, 2014
Salikhov, 2011, An increase of the soft gamma-radiation background by precipitations