Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nestel, P.J., et al. Isoflavones from red clover improve systemic arterial compliance but not plasma lipids in menopausal women. J. Clin. Endocrinol. Metab. 84, 895–898 ( 1999).
Murkies, A.L. et al. Dietary flour supplementation decreases post-menopausal hot flushes: effect of soy and wheat. Maturitas 21, 189 –195 (1995).
Civitelli, R. In vitro and in vivo effects of ipriflavone on bone formation and bone biomechanics. Calcif. Tissue Int. 61, Suppl: S12–14 (1997).
Gennari, C. et al. Effects of ipriflavone—a synthetic derivative of natural isoflavones—on bone mass in early years after menopause. Menopause 5, 9–15 (1998).
Peterson, G. & Barnes, S. Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochem. Biophys. Res. Commun. 179, 661–667 (1991).
Messina, M. & Barnes, S. The role of soy products in reducing cancer risk. J. Natl. Cancer Inst. 83, 541 –546 (1991).
Food labeling: health claims; soy protein and coronary heart disease; final rule. Federal Register 64 FR 57699, October 26, 1999. (http://www.fda.gov/).
Tsukamoto, C. et al. Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43, 1184–1192 (1995).
Eldridge, A.C. & Kwolek, W.F. Soybean isoflavones: effect of environment and variety on composition. J. Agric. Food Chem. 31, 394–396 ( 1983).
Wang, H.-J & Murphy, P.A. Mass balance study of isoflavones during soybean processing. J. Agric. Food Chem. 44, 2377–2383 (1996).
Okubo, K., et al. Components responsible for the undesirable taste of soybean seeds. Bioscience. Biotechnol. Biochem. 56, 99– 103 (1992).
Padmavati, M. & Reddy, A.R. Flavonoid biosynthetic pathway and cereal defence response: an emerging trend in crop biotechnology. Plant Biochem. Biotechnol. 8, 15–20 (1999).
Dixon, R.A. & Pavia, N.L. Stress-induced phenylpropanoid metabolism . Plant Cell 7, 1085–1097 (1995).
Blount, J.W., Dixon, R.A. & Paiva, N.L. Stress response in alfalfa (Medicago sativa L.). XVI. Antifungal activity of medicarpin and its biosynthetic precursors: implications for the genetic manipulation of stress metabolites. Physiol. Mol. Plant Pathol. 41, 333– 349 (1992).
Graham, T.L. in Handbook of phytoalexins metabolism and action (eds Daniel, M. & Purkayastha, R.P.) 85–116 (Marcel Dekker, New York; 1995).
Ebel, J. Phytoalexin synthesis: the biochemical analysis of the induction process. Annu. Rev. Phytopathol. 24, 235–264 (1986).
Rivera-Vargas, L.I., Schmitthenner, A.F. & Graham, T.L. Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 32, 851–857 (1993).
Graham, T.L. & Graham, M.Y. in Plant–microbe interactions . (eds Keen, N. & Stacey, G.) (APS Press, St. Paul; 2000), in press.
Pueppke, J.L. The genetics and biochemical basis for nodulation of legumes by rhizobia. Crit. Rev. Biotechnol. 16, 1–51 (1996).
Hashim, M.F., Hatkamatsuka, T., Ebizuka, Y. & Sankawa, U. Reaction mechanism of oxidative rearrangement of flavanone in isoflavone biosynthesis . FEBS Lett. 271, 219–222 (1990).
Schopfer, C.R. & Ebel, J. Identification of elicitor-induced cytochrome p450s of soybean (Glycine max L.) using differential display of mRNA. Mol. Gen. Genet. 258, 315–322 (1998).
Bolwell, G.P., Bozac, K. & Zimmerlin, A. Plant cytochrome P450. Phytochemistry 37, 1491–1506 (1994).
Pompon, D., Louerat, B., Bronne, A. & Urban, P. Yeast expression of animal and plant p450s in optimized redox environments. Methods Enzymol. 272, 51–64 ( 1996).
Nature Biotechnology Web Extras site ( http://biotech.nature.com/web_extras/).
Siminszky, B., Corbin, F.T., Ward, E.R., Fleischmann, T.J. & Dewey, R.E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides . Proc. Natl. Acad. Sci. USA 96, 1750– 1755 (1999).
Steele, C.L., Gijzen, M., Qutob, D. & Dixon, R.A. Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch. Biochem. Biophys. 367, 146–150 (1999).
Dewick, P.M. in The flavonoids: advances in research. (eds Harborne, J.B. & Mabry, T.J.) 535–640 (Chapman and Hall, New York; 1982).
Geigert, J., Stermitz, F.R., Johnson, G., Maag, D.D. & Johnson, D.K. Two phytoalexins from sugarbeet (Beta vulgaris) leaves. Tetrahedron 29, 2703–2706 (1973).
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 ( 1990).
Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1, 19–27 (1989).
Johnston, M. & Davis, R.W. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1440–1448 ( 1984).
Hua, S.B., Qiu, M., Chan, E., Zhu, L. & Luo, Y. Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast. Plasmid 38, 91– 96 (1997).
Hasenfratz, M.P. Clonage de la NADPH-cytochrome P450 reductase et d'une proteine calnexine-like chez Helianthus tuberosus. (Universite Louis Pasteur, Strasbourg, France; 1992).
Odell, J.T., Nagy, F. & Chua, N.-H Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810–812 (1985).
Depicker, A., Stachel, S., Dhaese, P., Zambryski, P. & Goodman, H.M. Nopaline synthase: transcript mapping and DNA sequence . J. Mol. Appl. Genet. 1, 561– 573 (1982).
Hajdukiewicz, P., Svab, Z. & Maliga, P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994 (1994).
Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris, Life Sci. 316, 1194– 1199 (1993).