Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides

Metabolic Engineering - Tập 29 - Trang 208-216 - 2015
Wenqiang Lu1, Lidan Ye1,2, Xiaomei Lv1, Wenping Xie1, Jiali Gu1, Zhaofeng Chen3, Yujun Zhu1, Aipeng Li1, Hongwei Yu1
1Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
3Group of Bioengineering, ZheJiang NHU Company Limited, Shaoxing 312521, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ajikumar, 2010, Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli, Science, 330, 70, 10.1126/science.1191652

Aklujkar, 2006, Investigation of Rhodobacter capsulatus PufX interactions in the core complex of the photosynthetic apparatus, Photosynth. Res., 88, 159, 10.1007/s11120-006-9047-y

Anthony, 2009, Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene, Metab. Eng., 11, 13, 10.1016/j.ymben.2008.07.007

Barz, 1995, Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex, Biochemistry, 34, 15248, 10.1021/bi00046a033

Beal, 2004, Mitochondrial dysfunction and oxidative damage in Alzheimer׳s and Parkinson׳s diseases and coenzyme Q10 as a potential treatment, J. Bioenerg. Biomembr., 36, 381, 10.1023/B:JOBB.0000041772.74810.92

Cheng, 2010, Enhanced production of coenzyme Q10 by overexpressing HMG-CoA reductase and induction with arachidonic acid in Schizosaccharomyces pombe, Appl. Biochem. Biotechnol., 160, 523, 10.1007/s12010-008-8386-x

Choi, 2009, Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q10 production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene, J. Biotechnol., 144, 64, 10.1016/j.jbiotec.2009.04.010

Choi, 2005, Biotechnological production and applications of coenzyme Q10, Appl. Microbiol. Biotechnol., 68, 9, 10.1007/s00253-005-1946-x

Cluis, 2007, Current prospects for the production of coenzyme Q10 in microbes, Trends Biotechnol., 25, 514, 10.1016/j.tibtech.2007.08.008

Cluis, 2011, Identification of bottlenecks in Escherichia coli engineered for the production of CoQ10, Metab. Eng., 13, 733, 10.1016/j.ymben.2011.09.009

Conrado, 2012, DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency, Nucleic Acids Res., 40, 1879, 10.1093/nar/gkr888

Dahl, 2013, Engineering dynamic pathway regulation using stress-response promoters, Nat. Biotechnol., 31, 1039, 10.1038/nbt.2689

Dhanasekaran, 2005, The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus, Curr. Neurovasc. Res., 2, 447, 10.2174/156720205774962656

Dueber, 2009, Synthetic protein scaffolds provide modular control over metabolic flux, Nat. Biotechnol., 27, 753, 10.1038/nbt.1557

Gorke, 2008, Carbon catabolite repression in bacteria: many ways to make the most out of nutrients, Nat. Rev. Microbiol., 6, 613, 10.1038/nrmicro1932

Gulmezian, 2007, The role of UbiX in Escherichia coli coenzyme Q biosynthesis, Arch. Biochem. Biophys., 467, 144, 10.1016/j.abb.2007.08.009

Holden-Dye, 2008, Structure, function and interactions of the PufX protein, Biochim. Biophys. Acta—Bioenerg., 1777, 613, 10.1016/j.bbabio.2008.04.015

Huang, 2011, Multiple strategies for metabolic engineering of Escherichia coli for efficient production of coenzyme Q10 Chinese, J. Chem. Eng., 19, 316

Kim, 2006, Amplification of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase level increases coenzyme Q10 production in recombinant Escherichia coli, Appl. Microbiol. Biotechnol., 72, 982, 10.1007/s00253-006-0359-9

Kim, 2001, Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production, Biotechnol. Bioeng., 72, 408, 10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H

Knoell, 1979, Isolation of a soluble enzyme complex comprising the ubiquinone-8 synthesis apparatus from the cytoplasmic membrane of Escherichia coli, Biochem. Biophys. Res. Commun., 91, 919, 10.1016/0006-291X(79)91967-3

Koo, 2010, Improvement of coenzyme Q10 production by increasing the NADH/NAD(+) ratio in Agrobacterium tumefaciens, Biosci. Biotechnol. Biochem., 74, 895, 10.1271/bbb.100034

Kroll, 2009, Establishment of a novel anabolism-based addiction system with an artificially introduced mevalonate pathway: complete stabilization of plasmids as universal application in white biotechnology, Metab. Eng., 11, 168, 10.1016/j.ymben.2009.01.007

Lee, 2013, Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay, Nucleic Acids Res., 41, 10668, 10.1093/nar/gkt809

Lim, 2011, Fundamental relationship between operon organization and gene expression, Proc. Natl. Acad. Sci. USA, 108, 10626, 10.1073/pnas.1105692108

Lu, 2013, Enhanced production of CoQ10 by constitutive overexpression of 3-demethyl ubiquinone-9 3-methyltransferase under tac promoter in Rhodobacter sphaeroides, Biochem. Eng. J., 72, 42, 10.1016/j.bej.2012.12.019

Lu, 2014, Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides, Biotechnol. Bioeng., 111, 761, 10.1002/bit.25130

Ma, 2011, Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases, Metab. Eng., 13, 588, 10.1016/j.ymben.2011.07.001

Marbois, 2005, Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q, J. Biol. Chem., 280, 20231, 10.1074/jbc.M501315200

Martin, 2003, Engineering a mevalonate pathway in Escherichia coli for production of terpenoids, Nat. Biotechnol., 21, 796, 10.1038/nbt833

Okada, 1998, Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans, Eur. J. Biochem., 255, 52, 10.1046/j.1432-1327.1998.2550052.x

Onodera, 2007, Overexpression and characterization of the Rhodobacter sphaeroides PufX membrane protein in Escherichia coli, Photochem. Photobiol., 83, 139, 10.1562/2006-01-30-RA-789

Park, 2005, Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans, Appl. Microbiol. Biotechnol., 67, 192, 10.1007/s00253-004-1743-y

Pitera, 2007, Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli, Metab. Eng., 9, 193, 10.1016/j.ymben.2006.11.002

Rodríguez-Villalón, 2008, Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways, J. Biotechnol., 135, 78, 10.1016/j.jbiotec.2008.02.023

Trinh, 2004, Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression, Mol. Immunol., 40, 717, 10.1016/j.molimm.2003.08.006

Wang, 2011, Metabolic engineering of Escherichia coli for alpha-farnesene production, Metab. Eng., 13, 648, 10.1016/j.ymben.2011.08.001

Zahiri, 2006, Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway, Metab. Eng., 8, 406, 10.1016/j.ymben.2006.05.002

Zelcbuch, 2013, Spanning high-dimensional expression space using ribosome-binding site combinatorics, Nucleic Acids Res., 41, e98, 10.1093/nar/gkt151

Zhang, 2007, Expression of various genes to enhance ubiquinone metabolic pathway in Agrobacterium tumefaciens, Enzyme Microb. Technol., 41, 772, 10.1016/j.enzmictec.2007.06.014

Zhang, 2003, Regulation of the isofunctional genes ubiD and ubiX of the ubiquinone biosynthetic pathway of Escherichia coli, FEMS Microbiol. Lett., 223, 67, 10.1016/S0378-1097(03)00343-4

Zhu, 1995, Production of ubiquinone in Escherichia coli by expression of various genes responsible for ubiquinone biosynthesis, J. Ferment. Bioeng., 79, 493, 10.1016/0922-338X(95)91268-A