Identification and colonization dynamics of an antagonistic endophytic bacterium 262XY2′ against Pseudomonas syringae causing tomato leaf spot disease

Springer Science and Business Media LLC - Tập 161 - Trang 233-245 - 2021
Chengde Yang1, Zhonghong Feng1, Ying Wang1, Mengjun Jin1, Tonghua Li1, JingJiang Zhou1,2
1College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, China
2State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China

Tóm tắt

Endophytic bacteria have attracted a great attention because they produce chemicals that increase the resistance of host plants against diseases. In the current study, 40 strains of endophytic bacteria from Kobreasia capillifolia of an alpine grassland were screened for the inhibitory effect against the tomato leaf pathogen Pseudomonas syringae. The endophytic bacterium strain 262XY2’ developed a clear inhibition zone of growth with a bacteriostatic band width of 0.67 cm against P. syringae on the cultural plates. The strain 262XY2’ also showed an inhibitory activity to Bipolaris sorokiniana, Stysanus stemonitis, Alternaria soloni, Botrytis cinerea, Fusarium solani and F. oxysporum. It was able to fix nitrogen, dissolve phosphorus and produce indole 3-acetic acid (IAA). Based on morphological characteristics and the molecular sequence analyses of 16S rRNA and gyrB genes, the 262XY2’ strain was identified as Bacillus subtilis. B. subtilis 262XY2’ strain tagged with the green fluorescence protein (GFP) was found to colonize stably in the roots, stems and leaves of tomato plants, and could be re-isolated from the rhizosphere soil after 0 to 60 days of inoculation. Moreover, it also exhibited a control effect of 48.55% against tomato leaf spot caused by P. syringae. Our results indicate that the antagonistic bacteria B. subtilis 262XY2’ has the potential to be used as a biocontrol agent for tomato leaf spot.

Tài liệu tham khảo

Abbamondi, G. R., Tommonaro, G., Weyens, N., Thijs, S., Sillen, W., Gkorezis, P., Iodice, C., Rangel, W. D. M., Nicolaus, B., & Vangronseld, J. (2016). Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chemical and Biological Technologies in Agriculture, 3. https://doi.org/10.1186/s40538-015-0051-3. Alexandrova, M., Bazzi, C., & Lameri, P. (2002). Bacillus subtilis strain BS-F3: Colonization of pear of organs and its action as a biocontrol agent. Acta Horticulturae, 590, 291–297. https://doi.org/10.17660/ActaHortic.2002.590.43. Alsultan, W., Vadamalai, G., Khairulmazmi, A., Saud, H. M., Al-Sadi, A. M., Rashed, O., Jaaffar, A. K. M., & Nasehi, A. (2019). Isolation, identification and characterization of endophytic bacteria antagonistic to Phytophthora palmivora causing black pod of cocoa in Malaysia. European Journal of Plant Pathology, 155, 1077–1091. Anith, K. N., Radhakrishnan, N. V., & Manomohandas, T. P. (2003). Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiological Research, 158, 91–97. Barman, D., & Dkhar, M. S. (2019). Plant growth-promoting potential of endophytic bacteria isolated from Costusspeciosus in tropical deciduous forest of eastern Himalaya. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 841–852. https://doi.org/10.1007/s40011-018-0998-5. Boone, D. R., Castenholz, R. W., Boone, D. R., & Castenholz, R. W. (2001). Bergey's Manual of Systematic Bacteriology (Second Edition, Volum 1). Springer Publication. Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey's Manual of Systematic Bacteriology (Second Edition, Volum 2 Part B, C). Springer Publication. Bric, J. M., Bostock, R. M., & Silverstone, S. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57, 535–538. Cao, Y., Zhang, Z. H., Ling, N., Yuan, Y. J., Zheng, X. Y., Shen, B., & Shen, Q. R. (2011). Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and Fertility of Soils, 47, 495–506. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., & Prasher, D. (1994) Green fluorescent protein as a marker for gene expression. Science, 263, 802–805 Chiu, W. L., Niwa, Y., Zeng, W. K., Hirano, T., Kobayashi, H., & Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Current Biology, 6, 325–330. https://doi.org/10.1016/S0960-9822(02)00483-9. Cocking, E. C. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant and Soil, 252, 169–175. Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669–678 Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 173, 33–38. De Vos, P., Garrity, G. M., & Jones, D. (2009). Bergey’s Manual of Systematic Bacteriology (Second Edition, Volum 3). Springer print. Eberl, L., Givskov, M., Poulsen, L. K., & Molin, S. (1997). Use of bioluminescence for monitoring the viability of individual Pseudomonas putida KT2442 cells. FEMS Microbiology Letters, 149, 133–140. https://doi.org/10.1016/S0378-1097(97)00070-0. Gao, S., Wu, H., Wang, W., Yang, Y., Xie, S., Xie, Y., & Gao, X. (2013). Efficient colonization and Harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis. Letters in Applied Microbiology, 57, 526–533. Gao, S. F., Wu, H. J., Yu, X. F., Qian, L. M., & Gao & X.W. (2016). Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biological Control, 98, 11–17. https://doi.org/10.1016/j.biocontrol.2016.03.011. Garlick, J. A., & Taichman, L. B. (1992). A model to study the fate of genetically-marked keratinocytes in culture. Journal of Dermatology, 19, 797–801. https://doi.org/10.1111/j.1346-8138.1992.tb03784.x. Ge, X. Y., He, C. E., Li, T., & Ouyang, Z. (2015). Effect of Bacillus subtilis and Pseudomonas fluorescens on growth of greenhouse tomato and rhizosphere microbial community. Journal of Northeast Agricultural University (English Edition), 22, 32–42. Gilbertson, A. W., Fitch, M. W., Burken, J. G., & Wood, T. K. (2007). Transport and survival of GFP-tagged root-colonizing microbes: Implications for rhizodegradation. European Journal of Soil Biology, 43, 224–232. https://doi.org/10.1016/j.ejsobi.2007.02.005. Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indolacetic acid. Plant Physiology, 26, 192–195. Guo, Q. Q, Li, H. E., Qian, Z. Q., Lu, J., & Zheng, W. L. (2021). Comparative study on the chloroplast genomes of five Larix species from the Qinghai-Tibet Plateau and the screening of candidate DNA markers. https://doi.org/10.1007/s11676-020-01279-4. Hao, B. Q., Ma, L. P., & Qiao, X. W. (2010). Colonization ability of plant growth promoting Bacillus B96-II-gfp labeled with GFP. Chinese Journal of Eco-Agriculture, 18, 861–865. Hosseine, A., Mehrdad, M. M., Hamid, K., Mohammad, H., Reza, M., & Nastaran, S. B. (2015). Detection of Pseudomonas aeruginosa by a triplex polymerase chain reaction assay based on lasI / R and gyrB genes. Journal of Infection and Public Health, 8, 314–322. Krzyzanowska, D., Obuchowski, M., Bikowski, M., Rychlowski, M., & Jafra, S. (2012). Colonization of potato rhizosphere by GFP-tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sensors, 12, 17608–17619. Li, S. Q., Zhang, N., Zhang, Z. H., Luo, J., Shen, B., Zhang, R. F., & Shen, Q. R. (2013). Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biology and Fertility of Soils, 49, 295–303. https://doi.org/10.1007/s00374-012-0718-x. Li, X., Sun, Z., Shao, S., Zhang, S., Ahammed, G. J., Zhang, G., Jiang, Y., Zhoul, J., Xia, X., Zhou, Y., Yu, J., & Sh, K. (2014). Tomato–Pseudom,onas syringae interactions under elevated CO2 concentration: the role of stomata. Journal of Experimental Botany, 66, 307–316. Li, L. L., Tan, J. J., Chen, F., Chen, F. M., & Hao, D. J. (2018). Colonization of Bacillus cereus NJSZ-13, a species with nematicidal activity in Masson pine (Pinus massoniana lamb.). Journal of Forestry Research, 31, 1025–1033. https://doi.org/10.1007/s11676-018-0823-2. Long, Y., Yin, X., Wang, M., Wu, X., & Li, M. (2017). Effects of sulfur on kiwifruit canker caused by pseudomonas syringae pv. actinidae. Bangladesh Journal of Botany, 46(3), 1183–1192. Malviya, N., Yandigeri, M. S., Yadav, A. K., Yadav, A. K., Solanki, M. K., & Arora, D. K. (2014). Isolation and characterization of novel alkali-halophilic actinomycetes from the Chilika brackish water lake, India. Annals of Microbiology, 64, 1829–1838. https://doi.org/10.1007/s13213-014-0831-1. Mintoo, M. N., Mishra, S., & Dantu, P. K. (2019). Isolation and characterization of endophytic Bacteria from Piper longum. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 1447–1454. Morin, X., Daneman, R., Zavortink, M., & Chia, W. (2001). A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 98, 15050–15055. https://doi.org/10.1073/pnas.261408198. Mougou, I., & Boughallebmhamdi, N. (2016). Detection, survival, and source of inoculum of Pseudomonas syringae pv. syringae from weeds and plant debris in relation to epidemiology of bacterial Citrus blast and black pit in Tunisia. Microbiology Research Journal International. https://doi.org/10.9734/BMRJ/2016/27954. Radha, T. K., & Rao, D. L. N. (2014). Plant growth promoting Bacteria from cow dung based biodynamic preparations. Indian Journal of Microbiology, 54, 413–418. Rekha, K., Kumar, R. M., Ilango, K., Rex, A., & Usha, B. (2018). Transcriptome profiling of rice roots in early response to Bacillus subtilis (RR4) colonization. Botany, 96, 749–765 Schulz, B., Boyle, C., Draeger, S., Römmert, A. K., & Krohn, K. (2002). Endophytic fungi: A source of novel biologically active secondary metabolites. Mycological Research, 106, 996–1004. Shi, X. X., Zhou, R. J., Wang, Q. Q., Chang, T. F., Feng, S. S., & Du, G. Q. (2015). Characteristics of pollen from transgenic lines of apple carrying the exogenous CpTI gene. Horticultural Plant Journal, 1, 3–10. Smirnova, D. V., & Ugarova, N. N. (2016). Firefly luciferase-based fusion proteins and their applications in bioanalysis. Photochemistry and Photobiology, 93, 436–447. Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857. Sun, S. X., Chen, Y. P., Cheng, J. J., Zheng, Z. C., & Lan, Z. L. (2018). Isolation, characterization, genomic sequencing, and GFP-marked insertional mutagenesis of a high-performance nitrogen-fixing bacterium, Kosakonia radicincitans GXGL-4A and visualization of bacterial colonization on cucumber roots. Folia Microbiologica, 63, 789–802. Sun, Z., Yang, L. M., Han, M., Han, Z. M., Yang, L., Cheng, L., Yang, X., & 7 Lv, Z.L. (2019). Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biological Control, 138. https://doi.org/10.1016/j.biocontrol.2019.104048. Tao, S. Y., Wu, Z. S., Wei, M. M., Liu, X. C., He, Y. H., & Ye, B. C. (2019). Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement. Canadian Journal of Microbiology, 65, 333–342. https://doi.org/10.1139/cjm-2018-0333. Tian, T., Qi, X. C., Wang, Q., & Mei, R. H. (2004). Colonization study of GFP-tagged Bacillus strains on wheat surface. Acta Phytopathologica Sinica, 34, 346–351. Venkatesh, B., Arifuzzaman, M., Mori, H., Suzuki, S., Taguchi, T., & Ohmiya, Y. (2005). Use of GFP tags to monitor localization of different luciferases in E. coli. Photochemical & Photobiological Sciences, 4, 740–743. von der Weid, I., Artursson, V., Seldin, L., & Jansson, J. K. (2005). Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World Journal of Microbiology and Biotechnology, 21, 1591–1597. https://doi.org/10.1007/s11274-005-8123-3. Wang, Q. C., & Ma, Z. W. (2004). Heavy metals in chemical fertilizer and environmental risks. Rural Eco-Environment, 20, 62–64. Wang, Y., Yang, C. D., Yao, Y. L., Wang, Y. Q., Zhang, Z. F., & Xue, L. (2016). The diversity and potential function of endophytic bacteria isolated from Kobreasia capillifolia at alpine grasslands on the Tibetan plateau, China. Journal of Integrative Agriculture, 15, 2153–2162. Wang, Y., Yang, C. D., Xue, L., Zhang, Z. F., Feng, Z. H., & Zhang, J. L. (2017). Bacillus mojavensis ZA1 labeling with GFP and its functional stability. Journal of Plant Protection, 44, 657–663. Wang, X. F., Xie, H. Q., Ku, Y. L., Yang, X. N., Chen, Y. L., Yang, N., Mei, X. L., & Cao, C. L. (2019). Chemotaxis of Bacillus cereus YL6 and its colonization of Chinese cabbage seedlings. Plant and Soil, 447, 413–430. https://doi.org/10.1007/s11104-019-04344-y. Zhang, N., Wu, K., He, X., Li, S. Q., Zhang, Z. H., Shen, B., Yang, X. M., Zhang, R. F., & Huang, Q. W. (2011). A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant and Soil, 344, 87–97. Zhang, X., Zhou, Y. Y., Li, Y., Fu, X. C., & Wang, Q. (2017). Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Protection, 96, 173–179. Zhao, Q. Y., Shen, Q. R., Ran, W., Xiao, T. J., Xu, D. B., & Xu, Y. C. (2011). Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.). Biology and Fertility of Soils, 47, 507–514. https://doi.org/10.1007/s00374-011-0558-0.