Identification and characterization of the ergochrome gene cluster in the plant pathogenic fungus Claviceps purpurea

Lisa Neubauer1, Julian Dopstadt2, Hans‐Ulrich Humpf2, Paul Tudzynski1
1Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
2Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bove FJ. The story of ergot. Basle: S. Karger; 1970.

Shaw BI, Mantle P. Host infection by Claviceps purpurea. Trans Br Mycol Soc. 1980;75(1):77–90.

Luttrell E. Host-parasite relationships and development of the ergot sclerotium in Claviceps purpurea. Can J Bot. 1980;58(8):942–58.

Tudzynski P, Neubauer L. Ergot alkaloids. In: Martín JF, García-Estrada C, Zeilinger S, editors. Biosynthesis and molecular genetics of fungal secondary metabolites. New York: Springer; 2014. p. 303–16.

Buchta M, Cvak L. Ergot alkaloids and other metabolites of the genus Claviceps. Ergot, the genus Claviceps. Med Aromat Plants. 1999;6:173–200.

Franck B, Reschke T. Mutterkorn-Farbstoffe, II. Isolierung der hydroxy-anthrachinon-carbonsäuren Endocrocin und Clavorubin aus Roggenmutterkorn. Chem Ber. 1960;93(2):347–56.

Franck B, Baumann G, Ohnsorge U. Ergochrome, eine ungewöhnlich vollständige Gruppe dimerer Farbstoffe aus Claviceps purpurea. Tetrahedron Lett. 1965;6(25):2031–7.

Franck B. Structure and biosynthesis of the ergot pigments. Angew Chem Int Ed Engl. 1969;8(4):251–60.

Kurobane I, Iwahashi S, Fukuda A. Cytostatic activity of naturally isolated isomers of secalonic acids and their chemically rearranged dimers. Drugs Exp Clin Res. 1987;13(6):339–44.

Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar S, Sahoo MR, Periyasamy G, et al. Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers. 2009;6(5):784–9.

Zhai A, Zhu X, Wang X, Chen R, Wang H. Secalonic acid A protects dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP)-induced cell death via the mitochondrial apoptotic pathway. Eur J Pharmacol. 2013;713(1):58–67.

Chiang YM, Szewczyk E, Davidson AD, Entwistle R, Keller NP, Wang CC, Oakley BR. Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl Environ Microbiol. 2010;76(7):2067–74.

Sanchez JF, Entwistle R, Hung JH, Yaegashi J, Jain S, Chiang YM, et al. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J Am Chem Soc. 2011;133(11):4010–7.

Gatenbeck S. The occurrence of endocrocin in Penicillium-islandicum. Acta Chem Scand. 1959;13(2):386–7.

Räisänen R, Björk H, Hynninen PH. Two-dimensional TLC separation and mass spectrometric identification of anthraquinones isolated from the fungus Dermocybe sanguinea. Zeitschrift für Naturforschung C. 2000;55(3–4):195–202.

Kurobane I, Vining LC. MCINNES AG. Biosynthetic relationships among the secalonic acids. Isolation of emodin, endocrocin and secalonic acids from Pyrenochaeta terrestris and Aspergillus aculeatus. J Antibiot. 1979;32(12):1256–66.

Lim FY, Hou Y, Chen Y, Oh JH, Lee I, Bugni TS, Keller NP. Genome-based cluster deletion reveals an endocrocin biosynthetic pathway in Aspergillus fumigatus. Appl Environ Microbiol. 2012;78(12):4117–25.

Awakawa T, Yokota K, Funa N, Doia F, Mori N, Watanabe H, Horinouchi S. Physically discrete β-lactamase-type thioesterase catalyzes product release in atrochrysone synthesis by iterative type I polyketide synthase. Chem Biol. 2009;16(6):613–23.

Throckmorton K, Lim FY, Kontoyiannis DP, Zheng W, Keller NP. Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus. Environ Microbiol. 2016;18(1):246–59.

Nielsen MT, Nielsen JB, Anyaogu DC, Holm DK, Nielsen KF, Larsen TO, Mortensen UH. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. PLoS ONE. 2013;8(8):e72871.

Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet. 2013;9(2):e1003323.

Aberhart D, Chen Y, De Mayo P, Stothers J. Mould metabolites—IV: the isolation and constitution of some ergot pigments. Tetrahedron. 1965;21(6):1417–32.

von Bargen C, Hübner F, Cramer B, Rzeppa S, Humpf H. Systematic approach for structure elucidation of polyphenolic compounds using a bottom-up approach combining ion trap experiments and accurate mass measurements. J Agric Food Chem. 2012;60(45):11274–82.

Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact. 1999;12(1):59–63.

Cary JW, Harris-Coward PY, Ehrlich KC, Di Mavungu JD, Malysheva SV, De Saeger S, et al. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fungal Genet Biol. 2014;64:25–35.

Liu GY, Nizet V. Color me bad: microbial pigments as virulence factors. Trends Microbiol. 2009;17(9):406–13.

Giesbert S, Schuerg T, Scheele S, Tudzynski P. The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea. Mol Plant Pathol. 2008;9(3):317–27.

Schürmann J, Buttermann D, Herrmann A, Giesbert S, Tudzynski P. Molecular characterization of the NADPH oxidase complex in the ergot fungus Claviceps purpurea: CpNox2 and CpPls1 are important for a balanced host–pathogen interaction. Mol Plant Microbe Interact. 2013;26(10):1151–64.

Taber W. Biology of Claviceps. In Demain AL, Nadine AS, editors. Biology of industrial microorganisms. Biotechnology series, vol 6. New York: The Benjamin Cummings Publishing Co Inc. 1986; p. 449–86.

Haarmann T, Machado C, Lubbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P. The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry. 2005;66(11):1312–20.

Sanchez S, Demain AL. Metabolic regulation of fermentation processes. Enzyme Microb Technol. 2002;31(7):895–906.

Krebs EG, Beavo JA. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48(1):923–59.

Lengeler KB, Davidson RC, D’souza C, Harashima T, Shen WC, Wang P, et al. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev. 2000;64(4):746–85.

Meyer V, Stahl U. New insights in the regulation of the afp gene encoding the antifungal protein of Aspergillus giganteus. Curr Genet. 2002;42(1):36–42.

Brewer D, Arsenault G, Wright J, Vining L. Production of bikaverin by Fusarium oxysporum and its identity with lycopersin. J Antibiot. 1973;26(12):778–81.

Dufosse L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol. 2014;26:56–61.

da Costa Souza PN, Grigoletto TLB, de Moraes LAB, Abreu LM, Guimarães LHS, Santos C, Galvão LR, Cardoso PG. Production and chemical characterization of pigments in filamentous fungi. Microbiology. 2016;162:12–22.

Masters K, Bräse S. Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis. Chem Rev. 2012;112(7):3717–76.

Kraft F. Über das Mutterkorn. Arch Pharm (Weinheim). 1906;244(4–5):336–59.

Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufosse L. Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect. 2012;2(5):174–93.

Duran N, Teixeira MF, De Conti R, Esposito E. Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr. 2002;42(1):53–66.

Keller U, Han M, Stoeffler-Meilicke M. d-Lysergic acid activation and cell-free synthesis of d-lysergyl peptides in an enzyme fraction from the ergot fungus Claviceps purpurea. Biochemistry (N Y). 1988;27(16):6164–70.

Esser K, Tudzynski P. Genetics of the ergot fungus Claviceps purpurea. Theor Appl Genet. 1978;53(4):145–9.

Mantle PG, Nisbet LJ. Differentiation of Claviceps purpurea in axenic culture. J Gen Microbiol. 1976;93(2):321–34.

Amici A, Minghetti A, Scotti T, Spalla C, Tognoli L. Production of ergotamine by a strain of Claviceps purpurea (Fr.) Tul. Experientia. 1966;22(6):415–6.

Winston F, Dollard C, Ricupero-Hovasse SL. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast. 1995;11(1):53–5.

Cenis JL. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res. 1992;20(9):2380.

Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA. 2006;103(27):10352–7.

Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992;110(1):119–22.

Schumacher J. Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol. 2012;49(6):483–97.

Jungehülsing U, Arntz C, Smit R, Tudzynski P. The Claviceps purpurea glyceraldehyde-3-phosphate dehydrogenase gene: cloning, characterization, and use for the improvement of a dominant selection system. Curr Genet. 1994;25(2):101–6.

Smit R, Tudzynski P. Efficient transformation of Claviceps purpurea using pyrimidine auxotrophic mutants: cloning of the OMP decarboxylase gene. Mol Gen Genet. 1992;234(2):297–305.

Tenberge KB, Homann V, Oeser B, Tudzynski P. Structure and expression of two polygalacturonase genes of Claviceps purpurea oriented in tandem and cytological evidence for pectinolytic enzyme activity during infection of rye. Phytopathology. 1996;86(10):1084–97.

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:465–9.