Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xác định và phân loại giống gạo có khả năng chịu hạn địa phương tại Indonesia
Tóm tắt
Nước là yếu tố thiết yếu để hỗ trợ sự sống. Do sự hạn chế về nguồn cung nước có thể ảnh hưởng đến chu kỳ sống của chúng, cây cối đã phát triển nhiều phản ứng đối với căng thẳng hạn hán. Những thay đổi về sinh lý và chuyển hóa của cây trong điều kiện hạn hán có thể phản ánh những thay đổi xảy ra ở cấp độ biểu hiện gen. Trong nghiên cứu này, chúng tôi đã điều tra sự biến đổi trong các chiến lược giảm thiểu hạn hán được áp dụng bởi các giống gạo có màu (Oryza sativa) và các gen liên quan đến khả năng chịu hạn có thể của chúng. Chúng tôi đã sàng lọc 21 giống gạo địa phương có màu từ Indonesia để tăng cường khả năng chịu hạn bằng phương pháp phân mảnh nước trong đất có thể thoát hơi, nhằm kiểm soát chính xác mức độ căng thẳng hạn hán tác động lên cây. Sau đó, chúng tôi xác định sự biểu hiện của các gen OsDREB1A, OsNAC6, OsNHX1, OsCuZnSOD2, OsOSCAT2 và OsCAT3 ở những cây trồng trong điều kiện được tưới đủ nước và trong điều kiện căng thẳng hạn hán trung bình hoặc nghiêm trọng. Trong số các giống gạo có màu, Merah Pari Eja chịu hạn tốt nhất, trong khi gạo đỏ Inpari 24 có tỷ lệ tử vong cao nhất (60%). Chúng tôi cũng đã thêm giống gạo trắng Putih Payo, giống này hoàn toàn nhạy cảm với hạn hán (với 100% tỷ lệ tử vong dưới các điều kiện đã sử dụng) như một đối chứng âm tính. Hồ sơ biểu hiện gen cho thấy sự tăng cường chung của các gen liên quan đến hạn hán ở Merah Pari Eja và sự giảm dần của các gen này ở hai giống gạo còn lại. Các phép đo hoạt động của enzyme chống oxy hóa, tổn thương lá, gốc tự do, chlorophyll và nội dung anthocyanin đã cung cấp thêm bằng chứng rằng Merah Pari Eja có khả năng chịu hạn tốt hơn hai giống còn lại. Chúng tôi kết luận rằng các mẫu biểu hiện của OsDREB1A, OsNAC6, OsNHX1, OsCuZnSOD2, OsOSCAT2 và OsCAT3 có thể chỉ ra những cây có khả năng chịu hạn tốt hơn.
Từ khóa
Tài liệu tham khảo
Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341
Anjum F, Yaseen M, Rasul E, Wahid A, Anjum S (2003) Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pak J Agric Sci 40:45–49
Asada K (1999) The water-water cycle in chloroplast: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639
Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58
Bergmeyer N (1970) Methoden der enzymatischen Analyse, vol 1. Akademie-Verlag, Berlin, pp 636–647
Bhatnagar-Mathur P, Devi MJ, Reddy SD, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of DREB1A in transgenic peanut (Arachis hypogea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082
Bouazizi H, Jouili H, Ferjani E (2007) Effects of Copper Excess on Growth, H2O2 Production and Peroxidase Activities in Maize Seedlings (Zea mays L.). Pak J Biol Sci PJBS 10:751–756
Chang TT, Loresto GC, Tagumpay O (1974) Screening of rice germplasm for drought resistant. SABRAO J Breed Genet 6:9–16
Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198
Dubouzet JG (2003) OsDREB genes in rice, Oryza sativa encode transcription activators that function in drought, highsalt and cold-responsive gene expression. Plant J 33:751–763
Eisa K, Najjar B, Mohammad B (2011) DRE-binding Transcription factor (DREB1A) as a master regulator induced a broad range of abiotic stress tolerance in plant. Afr J Biotechnol 10(67):15100–15108
Fabregas N, Fernie AR (2018) The metabolic response to drought. J Exp Bot 70:1077–1085
Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142
George S, Aswathi KPR, Puthur JT (2022) Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress 4(1):1–12
Guo Z, Ou W, Lu S, Zhong Q (2006) Differential response antioxidative system to chilling and drought in rice cultivars differing in sensitivity. Plant Physiol Biochem 43:828–836
Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681
Herald TJ, Gadgil P, Tilley M (2012) High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J Sci Food Agric 92(11):2326–2331
Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human skiinteracting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci USA 106:6410–6415
Hu H, Dai M, Yao J, Xiao B, LiZhang XQ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103(35):12987–12992
Jaffar MA, Song A, Faheem M, Chen S, Jiang J, Liu C (2016) Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-signaling pathway. Int J Mol Sci 17:693
Ji KX, Wang YY, Sun WN, Lou QJ, Mei HW, Shen SH, Chen H (2012) Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J Plant Physiol 169:336–344
Kar ME, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319
Khodabin G, Sarvestani ZT, Rad AHS, Sanavy SAMM (2020) Effect of drought stress on certain morphological and physiological characteristics of a resistant and a sensitive canola cultivar. Chem Biodivers 17(2):1–18
Kristamtini K, Taryono T, Basunanda P, Murti RH (2016) Keragaman genetik kultivar padi beras hitam lokal berdasarkan penanda mikrosatelit. Jurnal Agro Biogen 10:65–69
Lee JC, Kim JD, Hsieh FH, Eun JB (2008) Production of black rice cake using ground black rice and medium-grain brown rice. Int J Food Sci Technol 43:1078–1082
Lee D-K, Chung PJ, Jeong J, Jang G, Bang S, Jung H, Kim Y, Ha S-H, Choi Y, Kim J-J (2016) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15:10
Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim JK (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15(6):754–764
Li X, Lv X, Wang X, Wang L, Zhang M, Ren M (2018) Effect of abiotic stress on anthocyanin accumulation and grain weight in purple wheat. Crop Pasture Sci 69:1208–1214
Liang YC, Hu F, Yang MC, Zhu XL, Wang GP, Wang YL (1999) Mechanism of high yield and irrigation water use efficiency of rice in plastic film mulched dryland. Sci Agric Sin 32:26–32
Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–603
Lotkowska EM, Tohge T, Fernie RA, Xue PG, Balazadeh S, Roeber MB (2015) The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol 169(3):1862–1880
Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474
Martín J, Kuskoski EM, Navas MJ, Asuero AG (2017) Antioxidant capacity of anthocyanin pigments. In: Justino GC (ed) Flavonoids—from biosynthesis to human health, vol 10. Intech Open, p 5772
Mishra D, Shekhar S, Chakraborty S, Chakraborty N (2002) Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. Plant J 105:1374–1389
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
Nakashima K, Tran LS, VanNguyen D, Fujita M, Maruyama K, Todaka D (2007) Functional analysis of a NAC-type transcription factor 69 OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630
Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582
Ray JD, Sinclair TR (1998) The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. J Exp Bot 49:1381–1386
Raye R, Tran HD, Xuan TD, Khank TD (2018) Imposed water deficit after anthesis for the improvement of macronutrients, quality, phytochemical, and antioxidants in rice grain. Sustainability 10:4843
Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014
Selote DS, Bharti S, Khanna-Chopra R (2004) Drought acclimation reduces O2•—accumulation and lipid peroxidation in wheat seedlings. Biochem Biophys Res Commun 314:724–729
Shinozaki K, Shinozaki KY (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227
Sinclair TR, Ludlow MM (1986) Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13:319–340
Soeksmanto A, Hapsari Y, Simanjuntak P (2007) Kandungan Antioksidan pada Beberapa Bagian Tanaman Mahkota Dewa. Phaleria macrocarpa (Scheff) Boerl. (Thymelaceae). Biodiversitas 8:92–95
Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578
Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542
Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2022) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155(3):349–361
Sutrisno S, Susanto FA, Wijayanti P, Dewi M (2018) Screening of resistant Indonesian black rice cultivars against bacterial leaf blight Screening of resistant Indonesian black rice cultivars against bacterial leaf blight. Euphytica 214:199
Taylor IB (1991) Genetics of ABA synthesis. In: Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry. Bios Scientific Publishers Ltd, Oxford, pp 23–38
Tezera W, Mitchhel VJ, Driscoll SP, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917
Velazquez E, Tournier HA, de Buschiazzo PM, Saavedra G, Schinella GR (2003) Antioxidant activity of Paraguayans plant extracts. Fitoterapia 74:91–97
Wang N, Liu W, Yu L, Guo Z, Chen Z, Jiang S, Xu H, Fang H, Wang Y, Zhang Z, Chen X (2020) Heat shock factor A8a modulates flavonoid synthesis and drought tolerance. Plant Physiol 184:1273–1290
Wu J, Zhang J, Li X, Xu JJ, Wang L (2016) Identification and characterization of a PutCu/Zn-SOD gene from Puccinellia tenuiflora (Turcz.) Scribn. et Merr. Plant Growth Regul 79:55–64
Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183
Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989
