Identification and characterization of H-2d restricted CD4+ T cell epitopes on Lpp20 of Helicobacter pylori
Tóm tắt
Previous investigation has demonstrated that CD4+ T cells play a crucial role in effective immunity against Helicobacter pylori (H.pylori) infection. It has been well proved that Lpp20 is one of major protective antigens that induce immune responses after H.pylori invades host. Therefore it is valuable to identify CD4+ T cell epitopes on Lpp20, which is uncharacterized. Putative epitopes of H-2d restricted CD4+ T cell on Lpp20 of H.pylori were predicted by the SYFPEITHI algorithm and then eight hypothetical epitope peptides were synthesized. After BALB/c mice were primed with recombinant Lpp20, splenic CD4+ T cells were isolated and stimulated with synthesized peptides to measure T cell proliferation and MHC restriction. Cytokine profile was determined by ELISA and real-time PCR. Two identified epitopes were used to immunize mice to investigate CD4+ T cell response by flow cytometry. Two of eight peptides were able to stimulate CD4+ T cell proliferation and were mapped to residues 83-97aa and 58-72aa on Lpp20 respectively. These two peptides additively stimulated Th1 cells to secrete IFN-γ. The percentage of CD4+ T cell from mice immunized with two identified epitopes respectively was higher than the control group. The identification and characterization of two CD4+ T cell epitopes of Lpp20 helps understand the protective immunity of Lpp20 in H.pylori infection and design effective epitope vaccines against H.pylori.
Tài liệu tham khảo
Pappo J, Torrey D, Castriotta L, Savinainen A, Kabok Z, Ibraghimov A: Helicobacter pylori infection in immunized mice lacking major histocompatibility complex class I and class II functions. Infect Immun. 1999, 67 (1): 337-341.
Sette A, Fikes J: Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol. 2003, 15 (4): 461-470. 10.1016/S0952-7915(03)00083-9.
Keenan J, Oliaro J, Domigan N, Potter H, Aitken G, Allardyce R: Immune response to an 18-kilodalton outer membrane antigen identifies lipoprotein 20 as a Helicobacter pylori vaccine candidate. Infect Immun. 2000, 68 (6): 3337-3343. 10.1128/IAI.68.6.3337-3343.2000.
Keenan J, Neal S, Allardyce R, Roake J: Serum-derived IgG1-mediated immune exclusion as a mechanism of protection against H. pylori infection. Vaccine. 2002, 20 (23–24): 2981-2988.
Kostrzynska M, O’Toole PW, Taylor DE, Trust TJ: Molecular characterization of a conserved 20-kilodalton membrane-associated lipoprotein antigen of Helicobacter pylori. J Bacteriol. 1994, 176 (19): 5938-5948.
Li Y, Ning YS, Wang YD, Hong YH, Luo J, Dong WQ: Production of mouse monoclonal antibodies against Helicobacter pylori Lpp 20 and mapping the antigenic epitope by phage display library. J Immunol Methods. 2007, 325 (1–2): 1-8.
Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999, 50 (3–4): 213-219.
Armengol E, Wiesmuller KH, Wienhold D, Buttner M, Pfaff E, Jung G: Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J Gen Virol. 2002, 83 (Pt 3): 551-560.
Fournel S, Neichel S, Dali H, Farci S, Maillere B, Briand JP: CD4+ T cells from (New Zealand Black x New Zealand White)F1 lupus mice and normal mice immunized against apoptotic nucleosomes recognize similar Th cell epitopes in the C terminus of histone H3. J Immunol. 2003, 171 (2): 636-644.
Sutton P, Wilson J, Kosaka T, Wolowczuk I, Lee A: Therapeutic immunization against Helicobacter pylori infection in the absence of antibodies. Immunol Cell Biol. 2000, 78 (1): 28-30. 10.1046/j.1440-1711.2000.00881.x.
Gottwein JM, Blanchard TG, Targoni OS, Eisenberg JC, Zagorski BM, Redline RW: Protective anti-Helicobacter immunity is induced with aluminum hydroxide or complete Freund’s adjuvant by systemic immunization. J Infect Dis. 2001, 184 (3): 308-314. 10.1086/322032.
Drabner B, Reineke U, Schneider-Mergener J, Humphreys RE, Hartmann S, Lucius R: Identification of T helper cell-recognized epitopes in the chitinase of the filarial nematode Onchocerca volvulus. Vaccine. 2002, 20 (31–32): 3685-3694.
Romagnani S: Th1/Th2 cells. Inflamm Bowel Dis. 1999, 5 (4): 285-294. 10.1097/00054725-199911000-00009.
Bamford KB, Fan X, Crowe SE, Leary JF, Gourley WK, Luthra GK: Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology. 1998, 114 (3): 482-492. 10.1016/S0016-5085(98)70531-1.
D’Elios MM, Manghetti M, De Carli M, Costa F, Baldari CT, Burroni D: T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J Immunol. 1997, 158 (2): 962-967.
Mattapallil JJ, Dandekar S, Canfield DR, Solnick JV: A predominant Th1 type of immune response is induced early during acute Helicobacter pylori infection in rhesus macaques. Gastroenterology. 2000, 118 (2): 307-315. 10.1016/S0016-5085(00)70213-7.
Sawai N, Kita M, Kodama T, Tanahashi T, Yamaoka Y, Tagawa Y: Role of gamma interferon in Helicobacter pylori-induced gastric inflammatory responses in a mouse model. Infect Immun. 1999, 67 (1): 279-285.
Smythies LE, Waites KB, Lindsey JR, Harris PR, Ghiara P, Smith PD: Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4, but not IFN-gamma, gene-deficient mice. J Immunol. 2000, 165 (2): 1022-1029.
Ikewaki J, Nishizono A, Goto T, Fujioka T, Mifune K: Therapeutic oral vaccination induces mucosal immune response sufficient to eliminate long-term Helicobacter pylori infection. Microbiol Immunol. 2000, 44 (1): 29-39.
Mohammadi M, Nedrud J, Redline R, Lycke N, Czinn SJ: Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology. 1997, 113 (6): 1848-1857. 10.1016/S0016-5085(97)70004-0.
Saldinger PF, Porta N, Launois P, Louis JA, Waanders GA, Bouzourene H: Immunization of BALB/c mice with Helicobacter urease B induces a T helper 2 response absent in Helicobacter infection. Gastroenterology. 1998, 115 (4): 891-897. 10.1016/S0016-5085(98)70261-6.
Chen M, Chen J, Liao W, Zhu S, Yu J, Leung WK: Immunization with attenuated Salmonella typhimurium producing catalase in protection against gastric Helicobacter pylori infection in mice. Helicobacter. 2003, 8 (6): 613-625. 10.1111/j.1523-5378.2003.00182.x.
Akhiani AA, Pappo J, Kabok Z, Schon K, Gao W, Franzen LE: Protection against Helicobacter pylori infection following immunization is IL-12-dependent and mediated by Th1 cells. J Immunol. 2002, 169 (12): 6977-6984.
Corthesy-Theulaz IE, Hopkins S, Bachmann D, Saldinger PF, Porta N, Haas R: Mice are protected from Helicobacter pylori infection by nasal immunization with attenuated Salmonella typhimurium phoPc expressing urease A and B subunits. Infect Immun. 1998, 66 (2): 581-586.