Xác định và đặc trưng hóa Lactiplantibacillus plantarum BI-59.1 probiotic phân lập từ tejuino và khả năng sản xuất biofilm của nó

Current Microbiology - Tập 80 - Trang 1-13 - 2023
Rudy Antonio García-Reyes1, Apolinaria García-Cancino2, Gerardo Arrevillaga-Boni1, Marcela Espinoza-Monje2, Cristian Gutiérrez-Zamorano2, Javier Arrizon3, Marisela González-Avila1
1Ex-Vivo Digestion Laboratory, Medical and Pharmaceutical Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Guadalajara, Mexico
2Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepción, Bío-Bío, Chile
3Industrial Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Zapopan, Mexico

Tóm tắt

Tejuino là một loại đồ uống truyền thống và phổ biến được tiêu thụ ở miền bắc và miền tây Mexico. Nhờ vào các đặc tính sinh học, nó được coi là nguồn probiotic tự nhiên. Tuy nhiên, chỉ có rất ít nghiên cứu được thực hiện về hệ vi sinh vật của tejuino. Trong công trình này, tiềm năng probiotic của chủng Lactiplantibacillus plantarum BI-59.1 phân lập từ tejuino đã được nghiên cứu. Hiệu quả của nó được so sánh với một số chủng Lactobacillus thương mại và được xác định thông qua đồng dạng trình tự 16S rDNA. Chủng Lactiplantibacillus plantarum BI-59.1 thể hiện các thuộc tính probiotic, tức là, khả năng sản xuất các hợp chất kháng vi sinh (acid lactic và sự hiện diện của gen plantaricin A), ức chế các vi khuẩn gây bệnh đường ruột thông qua các tế bào phi sinh khối và metabolite (ức chế Salmonella enterica serovar Typhimurium đối với sự bám dính của HT29-MTX), hình thành biofilm, bám dính vi khuẩn (HT29-MTX, 3.96 CFU/tế bào) và dung nạp điều kiện tiêu hóa kích thích (khả năng dung nạp pH 3 và muối mật). Chủng này cũng có tính chất hemolytic gamma, nhạy cảm với hầu hết các loại kháng sinh và âm tính với việc sản xuất gelatinase; do đó, chủng Lactiplantibacillus plantarum BI-59.1 phù hợp để sử dụng như một probiotic trong các công thức nutraceutical hoặc dược phẩm.

Từ khóa

#Tejuino #Lactiplantibacillus plantarum #probiotic #biofilm #microbiota

Tài liệu tham khảo

Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz G (2017) Traditional fermented beverages from Mexico as a potential probiotic source. Ann Microbiol 67:577–586. https://doi.org/10.1007/s13213-017-1290-2 Massieu G, Cravioto RO, Guzman J, Olivera H (1959) Contribucion adicional al estudio de la composicion de alimentos Mexicanos. Ciencia, México 19:53–56 Rubio-Castillo ÁE, Santiago-López L, Vallejo-Cordoba B et al (2021) Traditional non-distilled fermented beverages from Mexico to based on maize: an approach to Tejuino beverage. Int J Gastron Food Sci 23:100283. https://doi.org/10.1016/j.ijgfs.2020.100283 Silva MS, Ramos CL, González-Avila M et al (2017) Probiotic properties of Weissella cibaria and Leuconostoc citreum isolated from tejuino: a typical Mexican beverage. LWT - Food Sci Technol 86:227–232. https://doi.org/10.1016/j.lwt.2017.08.009 Reid G (2016) Probiotics: definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol 30:17–25. https://doi.org/10.1016/j.bpg.2015.12.001 Pérez-Armendáriz B, Cardoso-Ugarte GA (2020) Traditional fermented beverages in Mexico: Biotechnological, nutritional, and functional approaches. Food Res Int 136:109307. https://doi.org/10.1016/j.foodres.2020.109307 Prasad J, Gill H, Smart J, Gopal PK (1998) Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 8:993–1002. https://doi.org/10.1016/S0958-6946(99)00024-2 Surendran Nair M, Amalaradjou MA, Venkitanarayanan K (2017) Antivirulence properties of probiotics in combating microbial pathogenesis. Adv Appl Microbiol 98:1–29. https://doi.org/10.1016/bs.aambs.2016.12.001 Sanders ME, Akkermans LMA, Haller D et al (2010) Gut Microbes Safety assessment of probiotics for human use Introduction and Scope. Rev Gut Microbes 1:164–185. https://doi.org/10.4161/gmic.1.3.12127 Hardy H, Harris J, Lyon E et al (2013) Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 5:1869–1912. https://doi.org/10.3390/nu5061869 Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61:219–225. https://doi.org/10.1016/j.phrs.2009.11.001 Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890. https://doi.org/10.3201/eid0809.020063 Baggi G, Cavalca L, Francia P, Zangrossi M (2004) Chlorophenol removal from soil suspensions: effects of a specialised microbial inoculum and a degradable analogue. Biodegradation 15:153–160. https://doi.org/10.1023/B:BIOD.0000026479.12672.d0 Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49:329–337. https://doi.org/10.1099/00207713-49-1-329 García A, Navarro K, Sanhueza E et al (2017) Characterization of Lactobacillus fermentum UCO-979C, a probiotic strain with a potent anti-Helicobacter pylori activity. Electron J Biotechnol 25:75–83. https://doi.org/10.1016/j.ejbt.2016.11.008 Tang H, Yuan J, Chong X, Wei H (2007) Antibiotic susceptibility of strains in Chinese medical probiotic products. J Med Coll PLA 22:149–152. https://doi.org/10.1016/S1000-1948(07)60032-X Georgieva RN, Iliev IN, Chipeva VA et al (2008) Identification and in vitro characterisation of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses. J Basic Microbiol 48:234–244. https://doi.org/10.1002/jobm.200700355 Peres CM, Alves M, Hernandez-Mendoza A et al (2014) Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT - Food Sci Technol 59:234–246. https://doi.org/10.1016/j.lwt.2014.03.003 Davies FL (1983) Methods in food and dairy microbiology. Trends Biotechnol 1:65–66. https://doi.org/10.1016/0167-7799(83)90074-4 Felten A, Barreau C, Bizet C et al (1999) Lactobacillus species identification, H2O2 production, and antibiotic resistance and correlation with human clinical status. J Clin Microbiol 37:729–733. https://doi.org/10.1128/jcm.37.3.729-733.1999 Singh AK, Ramesh A (2008) Succession of dominant and antagonistic lactic acid bacteria in fermented cucumber: insights from a PCR-based approach. Food Microbiol 25:278–287. https://doi.org/10.1016/j.fm.2007.10.010 Baccigalupi L, Di Donato A, Parlato M et al (2005) Small surface-associated factors mediate adhesion of a food-isolated strain of Lactobacillus fermentum to Caco-2 cells. Res Microbiol 156:830–836. https://doi.org/10.1016/j.resmic.2005.05.001 Salas-Jara MJ, Sanhueza EA, Retamal-Díaz A et al (2016) Probiotic Lactobacillus fermentum UCO-979C biofilm formation on AGS and Caco-2 cells and Helicobacter pylori inhibition. Biofouling 32:1245–1257. https://doi.org/10.1080/08927014.2016.1249367 Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738 Verna EC, Lucak S (2010) Use of probiotics in gastrointestinal disorders: what to recommend? Ther Adv Gastroenterol 3:307–319. https://doi.org/10.1177/1756283X10373814 Yadav R, Puniya AK, Shukla P (2016) Probiotic properties of Lactobacillus plantarum RYPR1 from an indigenous fermented beverage raabadi. Front Microbiol 7:1683. https://doi.org/10.3389/fmicb.2016.01683 Mathara JM, Schillinger U, Kutima PM et al (2008) Functional properties of Lactobacillus plantarum strains isolated from Maasai traditional fermented milk products in Kenya. Curr Microbiol 56:315–321. https://doi.org/10.1007/s00284-007-9084-6 Scott KP (2002) The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell Mol Life Sci 59:2071–2082. https://doi.org/10.1007/s000180200007 Imperial ICVJ, Ibana JA (2016) Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front Microbiol 07:1983. https://doi.org/10.3389/fmicb.2016.01983 Shao Y, Zhang W, Guo H et al (2015) Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control 50:250–258. https://doi.org/10.1016/j.foodcont.2014.09.003 Klarin B, Larsson A, Molin G, Jeppsson B (2019) Susceptibility to antibiotics in isolates of Lactobacillus plantarum RAPD -type Lp299v, harvested from antibiotic treated, critically ill patients after administration of probiotics. Microbiologyopen 8:e00642. https://doi.org/10.1002/mbo3.642 Cheng KW, Tseng CH, Tzeng CC et al (2019) Pharmacological inhibition of bacterial β-glucuronidase prevents irinotecan-induced diarrhea without impairing its antitumor efficacy in vivo. Pharmacol Res 139:41–49. https://doi.org/10.1016/j.phrs.2018.10.029 Son SH, Jeon HL, Jeon EB et al (2017) Potential probiotic Lactobacillus plantarum Ln4 from kimchi: evaluation of β-galactosidase and antioxidant activities. LWT - Food Sci Technol 85:181–186. https://doi.org/10.1016/j.lwt.2017.07.018 Abdulhussain Kareem R, Razavi SH (2020) Plantaricin bacteriocins: as safe alternative antimicrobial peptides in food preservation—A review. J Food Saf 40:e12735. https://doi.org/10.1111/jfs.12735 Diep DB, Straume D, Kjos M et al (2009) An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30:1562–1574 da Silva SS, Vitolo M, González JMD, de Oliveira RPS (2014) Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res Int 64:527–536. https://doi.org/10.1016/j.foodres.2014.07.041 Calasso M, Di CR, De AM et al (2013) Effects of the peptide pheromone plantaricin a and cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the exoproteome and the adhesion capacity of Lactobacillus plantarum DC400. Appl Environ Microbiol 79:2657–2669. https://doi.org/10.1128/AEM.03625-12 Kubota H, Senda S, Nomura N et al (2008) Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 106:381–386. https://doi.org/10.1263/jbb.106.381 Kubota H, Senda S, Tokuda H et al (2009) Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiol 26:592–597. https://doi.org/10.1016/j.fm.2009.04.001 Fernández Ramírez MD, Smid EJ, Abee T, Nierop Groot MN (2015) Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. Int J Food Microbiol 207:23–29. https://doi.org/10.1016/j.ijfoodmicro.2015.04.030 Aoudia N, Rieu A, Briandet R et al (2016) Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol 53:51–59. https://doi.org/10.1016/j.fm.2015.04.009 Monteagudo-Mera A, Rastall RA, Gibson GR et al (2019) Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol 103:6463–6472 Collado MC, Gueimonde M, Salminen S (2010) Probiotics in adhesion of pathogens. Bioactive foods in promoting health. Elsevier, Amsterdam, pp 353–370 Zhang K, Riba A, Nietschke M et al (2018) Minimal SPI1-T3SS effector requirement for Salmonella enterocyte invasion and intracellular proliferation in vivo. PLoS Pathog 14:e1006925. https://doi.org/10.1371/journal.ppat.1006925 Buntin N, de Vos WM, Hongpattarakere T (2017) Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats. Appl Microbiol Biotechnol 101:7663–7674. https://doi.org/10.1007/s00253-017-8482-3 Segers ME, Lebeer S (2014) Towards a better understanding of Lactobacillus rhamnosus GG - host interactions. Microb Cell Fact 13:S7. https://doi.org/10.1186/1475-2859-13-S1-S7 Bueno SM, Riquelme S, Riedel CA, Kalergis AM (2012) Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 137:28–36. https://doi.org/10.1111/j.1365-2567.2012.03614.x Bermudez-Brito M, Muñoz-Quezada S, Gómez-Llorente C et al (2015) Lactobacillus paracasei CNCM I-4034 and its culture supernatant modulate Salmonella-induced inflammation in a novel transwell co-culture of human intestinal-like dendritic and Caco-2 cells. BMC Microbiol 15:1–15. https://doi.org/10.1186/s12866-015-0408-6 Wan MLY, Chen Z, Shah NP, El-Nezami H (2018) Effects of Lactobacillus rhamnosus GG and Escherichia coli Nissle 1917 cell-free supernatants on modulation of mucin and cytokine secretion on human intestinal epithelial HT29-MTX cells. J Food Sci 83:1999–2007. https://doi.org/10.1111/1750-3841.14168 Mukai T, Asasaka T, Sato E et al (2002) Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunol Med Microbiol 32:105–110. https://doi.org/10.1111/j.1574-695x.2002.tb00541.x