Ideal MHD instabilities for coronal mass ejections: interacting current channels and particle acceleration
Tóm tắt
We review and discuss insights on ideal magnetohydrodynamic (MHD) instabilities that can play a role in destabilizing solar coronal flux rope structures. For single flux ropes, failed or actual eruptions may result from internal or external kink evolutions, or from torus unstable configurations. We highlight recent findings from 3D magnetic field reconstructions and simulations where kink and torus instabilities play a prominent role. For interacting current systems, we critically discuss different routes to coronal dynamics and global eruptions, due to current channel coalescence or to tilt-kink scenarios. These scenarios involve the presence of two nearby current channels and are clearly distinct from the popular kink or torus instability. Since the solar corona is pervaded with myriads of magnetic loops—creating interacting flux ropes typified by parallel or antiparallel current channels as exemplified in various recent observational studies—coalescence or tilt-kink evolutions must be very common for destabilizing adjacent flux rope systems. Since they also evolve on ideal MHD timescales, they may well drive many sympathetic eruptions witnessed in the solar corona. Moreover, they necessarily lead to thin current sheets that are liable to reconnection. We review findings from 2D and 3D MHD simulations for tilt and coalescence evolutions, as well as on particle acceleration aspects derived from computed charged particle motions in tilt-kink disruptions and coalescing flux ropes. The latter were recently studied in two-way coupled kinetic-fluid models, where the complete phase-space information of reconnection is incorporated.
Tài liệu tham khảo
T. Amari, J.F. Luciani, Z. Mikic, J. Linker, Three-dimensional solutions of magnetohydrodynamic equations for prominence magnetic support: twisted magnetic flux rope. ApJ Lett. 518, L57–L60 (1999). https://doi.org/10.1086/312053
T. Amari, A. Canou, J.J. Aly, F. Delyon, F. Alauzet, Magnetic cage and rope as the key for solar eruptions. Nature 554(7691), 211–215 (2018). https://doi.org/10.1038/nature24671
S.K. Antiochos, C.R. DeVore, J.A. Klimchuk, A model for solar coronal mass ejections. ApJ 510(1), 485–493 (1999). https://doi.org/10.1086/306563
A.K. Awasthi, R. Liu, H. Wang, Y. Wang, C. Shen, Pre-eruptive magnetic reconnection within a multi-flux-rope system in the solar corona. ApJ 857(2), 124 (2018). https://doi.org/10.3847/1538-4357/aab7fb
A.K. Awasthi, R. Liu, Y. Wang, Double-decker filament configuration revealed by mass motions. ApJ 872(1), 109 (2019). https://doi.org/10.3847/1538-4357/aafdad
G. Bateman, MHD instabilities (MIT Press, Cambridge, 1978)
C. Baumgartner, J.K. Thalmann, A.M. Veronig, On the factors determining the eruptive character of solar flares. ApJ 853, 105 (2018). https://doi.org/10.3847/1538-4357/aaa243
D. Biskamp, H. Welter, Coalescence of magnetic islands. PRL 44(16), 1069–1072 (1980). https://doi.org/10.1103/PhysRevLett.44.1069
G.J.J. Botha, T.D. Arber, A.W. Hood, Thermal conduction effects on the kink instability in coronal loops. A & A 525, A96 (2011). https://doi.org/10.1051/0004-6361/201015534
H. Carmichael, A Process for flares 50, 451 (1964)
J. Chen, Theory of prominence eruption and propagation: interplanetary consequences. J. Geophys. Res. Space Phys. 101, 27499 (1996). https://doi.org/10.1029/96JA02644
P.F. Chen, Coronal mass ejections: models and their observational basis. Living Rev. Solar Phys. 8(1), 1 (2011). https://doi.org/10.12942/lrsp-2011-1
L.K.S. Daldorff, G. Tóth, T.I. Gombosi, G. Lapenta, J. Amaya, S. Markidis, J.U. Brackbill, Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model. J. Comput. Phys. 268, 236–254 (2014). https://doi.org/10.1016/j.jcp.2014.03.009
P. Démoulin, G. Aulanier, Criteria for flux rope eruption: non-equilibrium versus torus instability. ApJ 718(2), 1388–1399 (2010). https://doi.org/10.1088/0004-637X/718/2/1388
S. Du, F. Guo, G.P. Zank, X. Li, A. Stanier, Plasma energization in colliding magnetic flux ropes. ApJ 867(1), 16 (2018). https://doi.org/10.3847/1538-4357/aae30e
Y. Fan, On the eruption of coronal flux ropes. ApJ 719(1), 728–736 (2010). https://doi.org/10.1088/0004-637X/719/1/728
J.M. Finn, P.K. Kaw, Coalescence instability of magnetic islands. Phys. Fluids 20, 72–78 (1977). https://doi.org/10.1063/1.861709
J.M. Finn, W.M. Manheimer, E. Ott, Spheromak tilting instability in cylindrical geometry. Phys. Fluids 24, 1336–1341 (1981). https://doi.org/10.1063/1.863536
J.P. Freidberg, Ideal magnetohydrodynamics (1987)
S.E. Gibson, Solar prominences: theory and models. Fleshing out the magnetic skeleton. Living Rev. Sol. Phys. 15, 7 (2018). https://doi.org/10.1007/s41116-018-0016-2
J.P. Goedbloed, R. Keppens, S. Poedts (2019) Magnetohydrodynamics of laboratory and astrophysical plasmas
J.P. Goedbloed, S. Poedts, Principles of Magnetohydrodynamics (2004)
T. Gou, R. Liu, B. Kliem, Y. Wang, A.M. Veronig, The birth of a coronal mass ejection. Sci. Adv. 5(3), 7004 (2019). https://doi.org/10.1126/sciadv.aau7004
Y. Guo, M.D. Ding, B. Schmieder, H. Li, T. Török, T. Wiegelmann, Driving mechanism and onset condition of a confined eruption. ApJ 725(1), L38–L42 (2010). https://doi.org/10.1088/2041-8205/725/1/L38
Y. Guo, C. Xia, R. Keppens, Magneto-frictional modeling of coronal nonlinear force-free fields. II. Application to observations. ApJ 828, 83 (2016). https://doi.org/10.3847/0004-637X/828/2/83
Y. Guo, C. Xia, R. Keppens, G. Valori, Magneto-frictional modeling of coronal nonlinear force-free fields. I. Testing with analytic solutions. ApJ 828, 82 (2016). https://doi.org/10.3847/0004-637X/828/2/82
Y. Guo, C. Xia, R. Keppens, M.D. Ding, P.F. Chen, Solar magnetic flux rope eruption simulated by a data-driven magnetohydrodynamic model. ApJ Lett. 870, L21 (2019). https://doi.org/10.3847/2041-8213/aafabf
A. Hassanin, B. Kliem, Helical kink instability in a confined solar eruption. ApJ 832(2), 106 (2016). https://doi.org/10.3847/0004-637X/832/2/106
T. Hirayama, Theoretical model of flares and prominences. I: Evaporating flare model. Sol. Phys. 34(2), 323–338 (1974). https://doi.org/10.1007/BF00153671
A.W. Hood, E.R. Priest, Kink instability of solar coronal loops as the cause of solar flares. Sol. Phys. 64, 303–321 (1979). https://doi.org/10.1007/BF00151441
Q. Hu, J. Qiu, B. Dasgupta, A. Khare, G.M. Webb, Structures of interplanetary magnetic flux ropes and comparison with their solar sources. ApJ 793, 53 (2014). https://doi.org/10.1088/0004-637X/793/1/53
P.A. Isenberg, T.G. Forbes, A three-dimensional line-tied magnetic field model for solar eruptions. ApJ 670(2), 1453–1466 (2007). https://doi.org/10.1086/522025
S.C. Jardin, The spheromak. Europhys. News 17, 73–76 (1986). https://doi.org/10.1051/epn/19861706073
Y. Jiang, J. Yang, H. Wang, H. Ji, Y. Liu, H. Li, J. Li, Interaction and merging of two sinistral filaments. ApJ 793(1), 14 (2014). https://doi.org/10.1088/0004-637X/793/1/14
J. Jing, C. Liu, J. Lee, H. Ji, N. Liu, Y. Xu, H. Wang, Statistical analysis of torus and kink instabilities in solar eruptions. ApJ 864(2), 138 (2018). https://doi.org/10.3847/1538-4357/aad6e4
R. Keppens, Z. Meliani, A.J. van Marle, P. Delmont, A. Vlasis, B. van der Holst, Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics. J. Comput. Phys. 231, 718–744 (2012). https://doi.org/10.1016/j.jcp.2011.01.020
R. Keppens, O. Porth, C. Xia, Interacting tilt and kink instabilities in repelling current channels. ApJ 795, 77 (2014). https://doi.org/10.1088/0004-637X/795/1/77
B. Kliem, T. Török, Torus instability. Phys. Rev. Lett. 96(25), 255002 (2006). https://doi.org/10.1103/PhysRevLett.96.255002
B. Kliem, T. Török, V.S. Titov, R. Lionello, J.A. Linker, R. Liu, C. Liu, H. Wang, Slow rise and partial eruption of a double-decker filament. II. A double flux rope model. ApJ 792(2), 107 (2014)
R.A. Kopp, G.W. Pneuman, Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50(1), 85–98 (1976). https://doi.org/10.1007/BF00206193
M. Kruskal, J.L. Tuck, The instability of a pinched fluid with a longitudinal magnetic field. Proc. R. Soc. A 245, 222–237 (1958). https://doi.org/10.1098/rspa.1958.0079
P. Kumar, P.K. Manoharan, W. Uddin, Evolution of solar magnetic field and associated multiwavelength phenomena: flare events on 2003 November 20. ApJ 710, 1195–1204 (2010). https://doi.org/10.1088/0004-637X/710/2/1195
S. Lankalapalli, J.E. Flaherty, M.S. Shephard, H. Strauss, An adaptive finite element method for magnetohydrodynamics. J. Comput. Phys. 225, 363–381 (2007). https://doi.org/10.1016/j.jcp.2006.12.010
M.G. Linton, Reconnection of nonidentical flux tubes. J. Geophys. Res. 111, A12–A12S09 (2006)
M.G. Linton, R.B. Dahlburg, S.K. Antiochos, Reconnection of twisted flux tubes as a function of contact angle. ApJ 553, 905–921 (2001). https://doi.org/10.1086/320974
Y. Liu, Magnetic field overlying solar eruption regions and kink and torus instabilities. ApJ Lett. 679(2), L151 (2008). https://doi.org/10.1086/589282
R. Liu, C. Liu, S.H. Park, H. Wang, Gradual inflation of active-region coronal arcades building up to coronal mass ejections. ApJ 723(1), 229–240 (2010). https://doi.org/10.1088/0004-637X/723/1/229
R. Liu, B. Kliem, T. Török, C. Liu, V.S. Titov, R. Lionello, J.A. Linker, H. Wang, Slow rise and partial eruption of a double-decker filament. I. Observations and interpretation. ApJ 756(1), 59 (2012). https://doi.org/10.1088/0004-637X/756/1/59
R. Liu, B. Kliem, V.S. Titov, J. Chen, Y. Wang, H. Wang, C. Liu, Y. Xu, T. Wiegelmann, Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. ApJ 818(2), 148 (2016). https://doi.org/10.3847/0004-637X/818/2/148
D.W. Longcope, H.R. Strauss, The coalescence instability and the development of current sheets in two-dimensional magnetohydrodynamics. Phys. Fluids B 5, 2858–2869 (1993). https://doi.org/10.1063/1.860673
D.W. Longcope, H.R. Strauss, Spontaneous reconnection of line-tied flux tubes. ApJ 426, 742–757 (1994). https://doi.org/10.1086/174111
M. Lyutikov, L. Sironi, S. Komissarov, O. Porth, Particle acceleration in relativistic magnetic flux-merging events. J. Plasma Phys. 83, 6 (2017). https://doi.org/10.1017/S002237781700071X
K.D. Makwana, R. Keppens, G. Lapenta, Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations. Comput. Phys. Commun. 221, 81–94 (2017). https://doi.org/10.1016/j.cpc.2017.08.003
K.D. Makwana, R. Keppens, G. Lapenta, Study of magnetic reconnection in large-scale magnetic island coalescence via spatially coupled MHD and PIC simulations. Phys. Plasmas 25(8), 082904 (2018). https://doi.org/10.1063/1.5037774
P.C.H. Martens, N.P.M. Kuin, A circuit model for filament eruptions and two-ribbon flares. Sol. Phys. 122, 263–302 (1989). https://doi.org/10.1007/BF00912996
Z.X. Mei, R. Keppens, I.I. Roussev, J. Lin, Magnetic reconnection during eruptive magnetic flux ropes. A&A 604, L7 (2017). https://doi.org/10.1051/0004-6361/201731146
Z.X. Mei, R. Keppens, I.I. Roussev, J. Lin, Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere. A&A 609, A2 (2018). https://doi.org/10.1051/0004-6361/201730395
R.L. Moore, B.J. Labonte, The filament eruption in the 3B flare of July 29, 1973 - Onset and magnetic field configuration. In: M. Dryer, E. Tandberg-Hanssen (eds.) Solar and Interplanetary Dynamics, IAU Symposium, vol. 91, pp. 207–210 (1980)
C.E. Myers, M. Yamada, H. Ji, J. Yoo, W. Fox, J. Jara-Almonte, A. Savcheva, E.E. Deluca, A dynamic magnetic tension force as the cause of failed solar eruptions. Nature 528(7583), 526–529 (2015). https://doi.org/10.1038/nature16188
S. Parenti, Solar prominences: observations. Living Rev. Sol. Phys. 11, 1 (2014). https://doi.org/10.12942/lrsp-2014-1
H.E. Petschek, Magnetic field annihilation. 50, 425 (1964)
R.F. Pinto, M. Gordovskyy, P.K. Browning, N. Vilmer, Thermal and non-thermal emission from reconnecting twisted coronal loops. A&A 585, A159 (2016). https://doi.org/10.1051/0004-6361/201526633
O. Porth, C. Xia, T. Hendrix, S.P. Moschou, R. Keppens, MPI-AMRVAC for solar and astrophysics. ApJ Suppl. Ser. 214, 4 (2014). https://doi.org/10.1088/0067-0049/214/1/4
R.L. Richard, R.D. Sydora, M. Ashour-Abdalla, Magnetic reconnection driven by current repulsion. Phys. Fluids B 2, 488–494 (1990). https://doi.org/10.1063/1.859338
B. Ripperda, O. Porth, C. Xia, R. Keppens, Reconnection and particle acceleration in interacting flux ropes. I. Magnetohydrodynamics and test particles in 2.5D. MNRAS 467, 3279–3298 (2017). https://doi.org/10.1093/mnras/stx379
B. Ripperda, O. Porth, C. Xia, R. Keppens, Reconnection and particle acceleration in interacting flux ropes. II. 3D effects on test particles in magnetically dominated plasmas. MNRAS 471, 3465–3482 (2017). https://doi.org/10.1093/mnras/stx1875
B. Ripperda, O. Porth, L. Sironi, R. Keppens, Relativistic resistive magnetohydrodynamic reconnection and plasmoid formation in merging flux tubes. MNRAS 485, 299–314 (2019). https://doi.org/10.1093/mnras/stz387
V.D. Shafranov, The stability of a cylindrical gaseous conductor in a magnetic field. Sov. J. Atomic Energy 1, 709 (1956). https://doi.org/10.1077/BF01480907
V.D. Shafranov, Plasma equilibrium in a magnetic field. Rev. Plasma Phys. 2, 103 (1966)
K. Shibata, T. Magara, Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8(1), 6 (2011). https://doi.org/10.12942/lrsp-2011-6
B. Snow, G.J.J. Botha, S. Régnier, R.J. Morton, E. Verwichte, P.R. Young, Observational signatures of a kink-unstable coronal flux rope using hinode/EIS. ApJ 842(1), 16 (2017). https://doi.org/10.3847/1538-4357/aa6d0e
A.K. Srivastava, T.V. Zaqarashvili, P. Kumar, M.L. Khodachenko, Observation of kink instability during small B5.0 solar flare on 2007 June 4. ApJ 715(1), 292–299 (2010). https://doi.org/10.1088/0004-637X/715/1/292
P.A. Sturrock, Model of the high-energy phase of solar flares. Nature 211(5050), 695–697 (1966). https://doi.org/10.1038/211695a0
Y. Su, R. Liu, S. Li, W. Cao, K. Ahn, H. Ji, High-resolution observations of flares in an arch filament system. ApJ 855(2), 77 (2018). https://doi.org/10.3847/1538-4357/aaac31
B.R. Suydam, Stability of a linear pinch. Proc. Second Int. Conf. Peaceful Uses Atomic Energy 31, 157 (1958)
V.S. Titov, P. Démoulin, Basic topology of twisted magnetic configurations in solar flares. A&A 351, 707–720 (1999)
T. Török, B. Kliem, Confined and ejective eruptions of kink-unstable flux ropes. ApJ Lett. 630, L97–L100 (2005). https://doi.org/10.1086/462412
T. Török, R. Chandra, E. Pariat, P. Démoulin, B. Schmieder, G. Aulanier, M.G. Linton, C.H. Mandrini, Filament interaction modeled by flux rope reconnection. ApJ 728, 65 (2011). https://doi.org/10.1088/0004-637X/728/1/65
T. Török, O. Panasenco, V.S. Titov, Z. Mikić, K.K. Reeves, M. Velli, J.A. Linker, G. De Toma, A model for magnetically coupled sympathetic eruptions. ApJ Lett. 739, L63 (2011). https://doi.org/10.1088/2041-8205/739/2/L63
D. Wang, R. Liu, Y. Wang, K. Liu, J. Chen, J. Liu, Z. Zhou, M. Zhang, Critical height of the torus instability in two-ribbon solar flares. ApJL 843, L9 (2017). https://doi.org/10.3847/2041-8213/aa79f0
W. Wang, R. Liu, Y. Wang, Q. Hu, C. Shen, C. Jiang, C. Zhu, Buildup of a highly twisted magnetic flux rope during a solar eruption. Nat. Commun. 8, 1330 (2017). https://doi.org/10.1038/s41467-017-01207-x
D. Wang, R. Liu, Y. Wang, T. Gou, Q. Zhang, Z. Zhou, M. Zhang, Unraveling the links among sympathetic eruptions. ApJ 869, 177 (2018). https://doi.org/10.3847/1538-4357/aaef35
C. Xia, J. Teunissen, I. El Mellah, E. Chané, R. Keppens, MPI-AMRVAC 2.0 for solar and astrophysical applications. ApJ Supplement Series 234(30), (2018). https://doi.org/10.3847/1538-4365/aaa6c8
C. Xia, R. Keppens, Formation and plasma circulation of solar prominences. ApJ 823, 22 (2016). https://doi.org/10.3847/0004-637X/823/1/22
C. Xia, R. Keppens, P. Antolin, O. Porth, Simulating the in situ condensation process of solar prominences. ApJ Lett. 792, L38 (2014). https://doi.org/10.1088/2041-8205/792/2/L38
C. Xia, R. Keppens, Y. Guo, Three-dimensional prominence-hosting magnetic configurations: creating a helical magnetic flux rope. ApJ 780, 130 (2014). https://doi.org/10.1088/0004-637X/780/2/130
Q. Zhang, R. Liu, Y. Wang, C. Shen, K. Liu, J. Liu, S. Wang, A prominence eruption driven by flux feeding from chromospheric fibrils. ApJ 789(2), 133 (2014). https://doi.org/10.1088/0004-637X/789/2/133
X. Zhao, C. Xia, R. Keppens, W. Gan, Formation and initiation of erupting flux rope and embedded filament driven by photospheric converging motion. ApJ 841, 106 (2017). https://doi.org/10.3847/1538-4357/aa7142
X. Zhao, C. Xia, T. Van Doorsselaere, R. Keppens, W. Gan, Forward modeling of SDO/AIA and X-ray emission from a simulated flux rope ejection. ApJ 872, 190 (2019). https://doi.org/10.3847/1538-4357/ab0284
X. Zhou, J. Büchner, M. Bárta, W. Gan, S. Liu, Electron acceleration by cascading reconnection in the solar corona. II. Resistive electric field effects. ApJ 827, 94 (2016). https://doi.org/10.3847/0004-637X/827/2/94
Z. Zhou, X. Cheng, J. Zhang, Y. Wang, D. Wang, L. Liu, B. Zhuang, J. Cui, Why do torus-unstable solar filaments experience failed eruptions? ApJ Lett. 877(2), L28 (2019). https://doi.org/10.3847/2041-8213/ab21cb
C. Zhu, D. Alexander, Eruption of a bifurcated solar filament. Sol. Phys. 289(1), 279–288 (2014). https://doi.org/10.1007/s11207-013-0349-x
C. Zhu, R. Liu, D. Alexander, X. Sun, R.T.J. McAteer, Complex flare dynamics initiated by a filament-filament interaction. ApJ 813(1), 60 (2015). https://doi.org/10.1088/0004-637X/813/1/60
P. Zou, C. Jiang, X. Feng, P. Zuo, Y. Wang, F. Wei, A two-step magnetic reconnection in a confined X-class flare in solar active region 12673. ApJ 870, 97 (2019). https://doi.org/10.3847/1538-4357/aaf3b7
F.P. Zuccarello, G. Aulanier, S.A. Gilchrist, Critical decay index at the onset of solar eruptions. ApJ 814, 126 (2015). https://doi.org/10.1088/0004-637X/814/2/126