Icariin cải thiện tình trạng mất myelin do cuprizone gây ra liên quan đến chống oxi hóa và chống viêm

Inflammopharmacology - Trang 1-15 - 2024
Li-Juan Song1,2, Qing-Xian Han1, Zhi-Bin Ding1, Kexin Liu1, Xiao-Xu Zhang2, Min-Fang Guo3, Dong Ma2, Qing Wang1, Bao-Guo Xiao4, Cun-Gen Ma1,3
1The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
2Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong, China
3Institute of Brain Science, Shanxi Datong University, Datong, China
4Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China

Tóm tắt

Điều trị bằng sự điều chỉnh miễn dịch trong bệnh xơ cứng nhiều nơ-rôn (MS) có thể làm giảm mức độ nghiêm trọng và các đợt tái phát. Tuy nhiên, điều này không thể cải thiện tình trạng khuyết tật thần kinh ở bệnh nhân do thiếu bảo vệ và tái sinh myelin. Do đó, liệu pháp tái myelin có thể là một trong những chiến lược khả thi nhằm ngăn ngừa sự thoái hóa sợi trục và phục hồi khả năng thần kinh. Icariin (ICA) là một hợp chất flavonol chiết xuất từ flavonoid epimedium, có tác dụng bảo vệ thần kinh trong nhiều mô hình bệnh lý thần kinh. Trong nghiên cứu này, chúng tôi cố gắng khám phá xem ICA có tiềm năng điều trị tình trạng mất myelin hay không và cơ chế hoạt động có thể có của nó bằng cách sử dụng tế bào viễn mạch BV2 được điều trị bằng lipopolysaccharide, tế bào viễn mạch nguyên phát, đại thực bào xuất phát từ tủy xương và mô hình mất myelin do cuprizone. Các chỉ số của stress oxy hóa và phản ứng viêm được đánh giá bằng cách sử dụng bộ kit thương mại. Kết quả cho thấy ICA đã giảm đáng kể nồng độ các trung gian oxy hóa như nitric oxide, hydrogen peroxide, malondialdehyde, và các cytokine viêm TNF-α, IL-1β, đồng thời tăng nồng độ các chất chống oxy hóa bao gồm superoxide dismutase, catalase, glutathione peroxidase, và các cytokine chống viêm IL-10 và TGF-β trong các thí nghiệm tế bào in vitro. Trong mô hình mất myelin in vivo, ICA đã làm giảm rõ rệt các bất thường về hành vi và tăng mật độ quang học tích hợp/mm2 của nhuộm myelin Black Gold II và protein cơ bản của myelin, đi kèm với ức chế stress oxy hóa/phản ứng viêm. Nhuộm hóa mô miễn dịch cho thấy ICA đã kích thích đáng kể sự biểu hiện của yếu tố hạt nhân erythroid nguồn gốc 2/heme oxygenase-1 (Nrf2/HO-1) và ức chế sự biểu hiện của thụ thể toll giống 4/yếu tố hạt nhân kappa B (TLR4/NF-κB), đây là hai con đường tín hiệu chính trong các quá trình chống oxy hóa và chống viêm. Kết quả của chúng tôi mạnh mẽ gợi ý rằng ICA có thể được sử dụng như một tác nhân tiềm năng để điều trị tình trạng mất myelin thông qua việc điều chỉnh stress oxy hóa do Nrf2/HO-1 và các phản ứng viêm do TLR4/NF-κB.

Từ khóa

#Ikariin #xơ cứng nhiều nơron #mất myelin #chống oxi hóa #chống viêm #thụ thể toll-like #tín hiệu Nrf2/HO-1 #mô hình cuprizone

Tài liệu tham khảo

An J, Yin JJ, He Y, Sui RX, Miao Q, Wang Q, Yu JZ, Yu JW, Shi FD, Ma CG, Xiao BG (2020) Temporal and spatial dynamics of astroglial reaction and immune response in cuprizone-induced demyelination. Neurotox Res 37(3):587–601 Annibali V, Mechelli R, Romano S, Buscarinu MC, Fornasiero A, Umeton R, Ricigliano VA, Orzi F, Coccia EM, Salvetti M, Ristori G (2015) IFN-β and multiple sclerosis: from etiology to therapy and back. Cytokine Growth Factor Rev 26(2):221–228 Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E (2020) Antioxidant alternatives in the treatment of amyotrophic lateral sclerosis: a comprehensive review. Front Physiol 11:63 Chesnokova V, Melmed S, Angeles CL, Angeles L (2014) Minireview: neuro-immuno-endocrine modulation of the hypothalamic-pituitary-adrenal (HPA) axis by gp130 signaling. Molecules 143:1571–1574 Cho JH, Jung JY, Lee BJ, Lee K, Park JW, Bu Y (2017) Epimedii Herba: a promising herbal medicine for neuroplasticity. Phytother Res 31(6):838–848 Cong H, Zhang M, Chang H, Du L, Zhang X, Yin L (2020) Icariin ameliorates the progression of experimental autoimmune encephalomyelitis by down-regulating the major inflammatory signal pathways in a mouse relapse-remission model of multiple sclerosis. Eur J Pharmacol 885:173523 Davis KE, Burnett K, Gigg J (2017) Water and T-maze protocols are equally efficient methods to assess spatial memory in 3xTg Alzheimer’s disease mice. Behav Brain Res 331:54–66 Domingues HS, Portugal CC, Socodato R, Relvas JB (2016) Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol 4:71 Du Q, Xia M, Ito Y (2002) Purification of icariin from the extract of Epimedium segittatum using highspeed counter-current chromatography. J Chromatogr A. 962(1–2):239–241 Fernández J, Silván B, Entrialgo CR, Villar CJ, Capasso R, Uranga JA, Lombó F, Abalo R (2021) Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomed Pharmacother 143:112241 Gingele S, Stangel M (2020) Emerging myelin repair agents in preclinical and early clinical development for the treatment of multiple sclerosis. Expert Opin Investig Drugs 29(6):583–594 Guo S, Wang H, Yin Y (2022) Microglia polarization from M1 to M2 in neurodegenerative diseases. Front Aging Neurosci 14:815347 Han SR, Kang YH, Jeon H, Lee S, Park SJ, Song DY, Min SS, Yoo SM, Lee MS, Lee SH (2020) Differential expression of miRNAs and behavioral change in the cuprizone-induced demyelination mouse model. Int J Mol Sci 21(2):646 Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z (2019) An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 842:20–32 Kalafatakis I, Karagogeos D (2021) Oligodendrocytes and microglia: key players in myelin development. Damage Repair Biomol 11(7):1058 Kanno T, Kurotaki T, Yamada N, Tomonari Y, Sato J, Tsuchitani M, Kobayashi Y (2019) Supplemental study on 2’, 3’-cyclic nucleotide 3’-phosphodiesterase (CNPase) activity in developing rat spinal cord lesions induced by hexachlorophene and cuprizone. J Vet Med Sci 81(9):1368–1372 Kuhlmann T, Moccia M, Coetzee T, Cohen JA, Correale J, Graves J, Marrie RA, Montalban X, Yong VW, Thompson AJ, Reich DS (2023) Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol 22(1):78–88 Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9(1):42 Lan Z, Xie G, Wei M, Wang P, Chen L (2017) The protective effect of Epimedii Folium and Curculiginis Rhizoma on Alzheimer’s disease by the inhibitions of NF-κB/MAPK pathway and NLRP3 inflammasome. Oncotarget 8(27):43709–43720 Li C, Yang S, Ma H, Ruan M, Fang L, Cheng J (2021) Influence of icariin on inflammation, apoptosis, invasion, and tumor immunity in cervical cancer by reducing the TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Cancer Cell Int 21(1):206 Liu L, Locascio LM, Doré S (2019) Critical role of Nrf2 in experimental ischemic stroke. Front Pharmacol 10:153 Luthra R, Roy A (2022) Role of medicinal plants against neurodegenerative diseases. Curr Pharm Biotechnol 23(1):123–139 Masson MA, Nait-Oumesmar B (2023) Emerging concepts in oligodendrocyte and myelin formation, inputs from the zebrafish model. Glia 71(5):1147–1163 Mitra S, Das R, Emran TB, Labib RK, Noor ET, Islam F, Sharma R, Ahmad I, Nainu F, Chidambaram K, Alhumaydhi FA, Chandran D, Capasso R, Wilairatana P (2022) Diallyl disulfide: a bioactive garlic compound with anticancer potential. Front Pharmacol 13:943967 Mohajeri M, Sadeghizadeh M, Najafi F, Javan M (2015) Polymerized nano-curcumin attenuates neurological symptoms in EAE of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacol 99:156–167 Mojaverrostami S, Bojnordi MN, Ghasemi-Kasman M, Ebrahimzadeh MA, Hamidabadi HG (2018) A review of herbal therapy in multiple sclerosis. Adv Pharm Bull 8(4):575–590 Ogata T (2019) Therapeutic strategies for oligodendrocyte-mediated remyelination. Adv Exp Med Biol 1190:265–279 Ohl K, Tenbrock K, Kipp M (2016) Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp Neurol 277:58–67 Padmavathi G, Ramkumar KM (2021) MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 698:108725 Park HA, Ellis AC (2020) Dietary antioxidants and Parkinson’s Disease. Antioxidants (Basel) 9(7):570 Pfeiffer SE, Barbarese E, Bhat S (1981) Noncoordinate regulation of myelinogenic parameters in primary cultures of dissociated fetal rat brain. J Neurosci Res 6(3):369–380 Rudick RA, Rani MR, Xu Y, Lee JC, Na J, Shrock J, Josyula A, Fisher E, Ransohoff RM (2011) Excessive biologic response to IFNβ is associated with poor treatment response in patients with multiple sclerosis. PLoS ONE 6(5):e19262 Sams EC (2021) Oligodendrocytes in the aging brain. Neuronal Signal 5(3):NS20210008 Sen MK, Mahns DA, Coorssen JR, Shortland PJ (2019) Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 107:23–46 Sen MK, Almuslehi MSM, Coorssen JR, Mahns DA, Shortland PJ (2020) Behavioural and histological changes in cuprizone-fed mice. Brain Behav Immun 87:508–523 Shen R, Deng W, Li C, Zeng G (2015) A natural flavonoid glucoside icariin inhibits Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis. Int Immunopharmacol 24(2):224–231 Singh S, Metz I, Amor S, van der Valk P, Stadelmann C, Brück W (2013) Microglial nodules in early white matter are associated with degenerating axons. Acta Neuropathol 125(4):595–608 Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2019) NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059 Stangel M, Kuhlmann T, Matthews PM, Kilpatrick TJ (2017) Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat Rev Neurol 13(12):742–754 Stark JC, Wallace E, Lim R, Leaw B (2018) Characterization and isolation of mouse primary microglia by density gradient centrifugation. J vis Exp 132:57065 Steelman AJ, Thompson JP, Li J (2012) Demyelination and remyelination in anatomically distinct regions of the corpus callosum following cuprizone intoxication. Neurosci Res 72(1):32–42 Sze SC, Tong Y, Ng TB, Cheng CL, Cheung HP (2010) Herba Epimedii: anti-oxidative properties and its medical implications. Molecules 15(11):7861-7870 Tamashiro TT, Dalgard CL, Byrnes KR (2012) Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. J Vis Exp 66:e3814 Tan J, Li W, Teng Z, Wang G, Li Y, Zhang Y. Kaohsiung J (2022) Senkyunolide H inhibits activation of microglia and attenuates lipopolysaccharide-mediated neuroinflammation and oxidative stress in BV2 microglia cells via regulating ERK and NF-κB pathway. Med Sci. 38(4):378–384 Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM, Teleanu RI (2022) An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci 23(11):5938 Thapa A, Carroll NJ (2017) Dietary modulation of oxidative stress in Alzheimer’s Disease. Int J Mol Sci 18(7):1583 Tian H, Ding N, Guo M, Wang S, Wang Z, Liu H, Yang J, Li Y, Ren J, Jiang J, Li Z (2019) Analysis of learning and memory ability in an Alzheimer’s disease mouse model using the Morris water maze. J Vis Exp. https://doi.org/10.3791/60055 Tuoheti A, Gu X, Cheng X, Zhang H (2021) Silencing Nrf2 attenuates chronic suppurative otitis media by inhibiting pro-inflammatory cytokine secretion through up-regulating TLR4. Innate Immun 27(1):70–80 Wang Y, Shang C, Zhang Y, Xin L, Jiao L, Xiang M, Shen Z, Chen C, Ding F, Lu Y, Cui X (2023) Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 158:114156 Waslo C, Bourdette D, Gray N, Wright K, Spain R (2019) Lipoic acid and other antioxidants as therapies for multiple sclerosis. Curr Treat Options Neurol 21(6):26 Wei Z, Deng X, Hong M, Su Q, Liu A, Huang Y, Yu Q, Peng Z (2015) Icariin has synergistic effects with methylprednisolone to ameliorate EAE via modulating HPA function, promoting anti-inflammatory and anti-apoptotic effects. Int J Clin Exp Med 8(11):20188–20197 Wei Z, Wang M, Hong M, Diao S, Liu A, Huang Y, Yu Q, Peng Z (2016) Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptorβ, modulating HPA function and glucocorticoid receptor expression. Am J Transl Res 8(4):1910–1918 Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The forced swim test as a model of depressive-like behavior. J vis Exp 97:52587 Zhang B, Wang G, He J, Yang Q, Li D, Li J, Zhang F (2019) Icariin attenuates neuroinflammation and exerts dopamine neuroprotection via a Nrf2-dependent manner. J Neuroinflammation 16(1):92 Zhen W, Liu A, Lu J, Zhang W, Tattersall D, Wang J (2017) An alternative cuprizone-induced demyelination and remyelination mouse model. ASN Neuro 9(4):1759091417725174 Zheng XX, Li YC, Yang KL, He ZX, Wang ZL, Wang X, Jing HL, Cao YJ (2021) Icariin reduces Glu-induced excitatory neurotoxicity via antioxidative and antiapoptotic pathways in SH-SY5Y cells. Phytother Res 35(6):3377–3389 Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR (2022) Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 17(1):34