ISO-FLUCS: symmetrization of optofluidic manipulations in quasi-isothermal micro-environments

eLight - Tập 3 Số 1
Antonio Minopoli1, Susan Wagner1, Elena Erben1, Weida Liao2, Iliya D. Stoev3, Eric Lauga2, Moritz Kreysing1
1Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
3Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany

Tóm tắt

AbstractRecently, it has been demonstrated that thermoviscous flows can be used for a range of fine micromanipulations, such as moving the cytoplasm of cells and developing embryos, intracellular rheology, and femtonewton-range force measurements. These flows, also known as focused-light-induced cytoplasmic streaming (FLUCS), are induced by mid-infrared laser scanning of a temperature spot through the sample. However, localized laser scanning can inflict temperature perturbations of several Kelvins on the sample, potentially eliciting unspecific biological responses. In this study, we demonstrate how exploiting symmetry relations during laser scanning effectively disentangles laser heating and flow induction. We introduce flow-neutral scan sequences that use dynamic photothermal stimuli and spatiotemporal symmetry relations of scanning bridging up to three distinct time scales. We leverage further insights from a recently published analytical model of flow fields to present quasi-homogenous temperature distributions that leave flow lines and their local and directed character largely invariant. We present practical, intuitive solutions through predesigned sets of scan lines with near isothermal distributions and demonstrate that they are sufficient to generate and control flows in Caenorhabditis elegans embryos on a magnitude well in excess of endogenous flow velocities. Our results enable the separation of two previously tightly linked classes of physical stimuli, introduce a new, even less invasive standard for performing FLUCS perturbations, and pave the way for new unexplored avenues in the fields of soft matter and biomedicine. Graphical Abstract

Từ khóa


Tài liệu tham khảo

J. Li, E.H. Hill, L. Lin, Y. Zheng, Optical nanoprinting of colloidal particles and functional structures. ACS Nano 13, 3783–3795 (2019). https://doi.org/10.1021/acsnano.9b01034

L. Lin, E.H. Hill, X. Peng, Y. Zheng, Optothermal manipulations of colloidal particles and living cells. Acc. Chem. Res. 51, 1465–1474 (2018). https://doi.org/10.1021/acs.accounts.8b00102

G. Nalupurackal, M. Gunaseelan, S. Roy et al., A hydro-thermophoretic trap for microparticles near a gold-coated substrate. Soft Matter (2022). https://doi.org/10.1039/D2SM00627H

A.N. Koya, J. Cunha, T. Guo et al., Novel plasmonic nanocavities for optical trapping-assisted biosensing applications. Adv. Opt. Mater. 8, 1901481 (2020). https://doi.org/10.1002/adom.201901481

Y. Liu, H. Ding, J. Li et al., Light-driven single-cell rotational adhesion frequency assay. e-Light 2, 13 (2022). https://doi.org/10.1186/s43593-022-00020-4

S. Liu, L. Lin, H.-B. Sun, Opto-thermophoretic manipulation. ACS Nano 15, 5925–5943 (2021). https://doi.org/10.1021/acsnano.0c10427

S. Xie, Y. Du, Y. Zhang et al., Aptamer-based optical manipulation of protein subcellular localization in cells. Nat. Commun. 11, 1347 (2020). https://doi.org/10.1038/s41467-020-15113-2

M. Kreysing, Probing the functional role of physical motion in development. Dev. Cell. 51, 135–144 (2019). https://doi.org/10.1016/j.devcel.2019.10.002

F.M. Weinert, D. Braun, Optically driven fluid flow along arbitrary microscale patterns using thermoviscous expansion. J. Appl. Phys. 104, 104701 (2008). https://doi.org/10.1063/1.3026526

W. Liao, E. Erben, M. Kreysing, E. Lauga, Theoretical model of confined thermoviscous flows for artificial cytoplasmic streaming. Phys. Rev. Fluids 8, 034202 (2023). https://doi.org/10.1103/PhysRevFluids.8.034202

N.T. Chartier, A. Mukherjee, J. Pfanzelter et al., A hydraulic instability drives the cell death decision in the nematode germline. Nat. Phys. 17, 920–925 (2021). https://doi.org/10.1038/s41567-021-01235-x

M. Mittasch, P. Gross, M. Nestler et al., Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nat. Cell. Biol. 20, 344–351 (2018). https://doi.org/10.1038/s41556-017-0032-9

M. Mittasch, V.M. Tran, M.U. Rios et al., Regulated changes in material properties underlie centrosome disassembly during mitotic exit. J. Cell Biol. (2020). https://doi.org/10.1083/jcb.201912036

K. Kruse, N. Chiaruttini, A. Roux, Optical control of cytoplasmic flows. Nat. Cell Biol. 20, 227–228 (2018). https://doi.org/10.1038/s41556-018-0050-2

T. Nawy, Live-streaming the cytoplasm. Nat. Methods 15, 244–244 (2018). https://doi.org/10.1038/nmeth.4656

E. Erben, B. Seelbinder, I.D. Stoev et al., Feedback-based positioning and diffusion suppression of particles via optical control of thermoviscous flows. Opt. Express 29, 30272 (2021). https://doi.org/10.1364/OE.432935

I.D. Stoev, B. Seelbinder, E. Erben et al., Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap. eLight 1, 7 (2021). https://doi.org/10.1186/s43593-021-00007-7

X. Zhang, B. Gu, C.-W. Qiu, Force measurement goes to femto-Newton sensitivity of single microscopic particle. Light Sci. Appl. 10, 243 (2021). https://doi.org/10.1038/s41377-021-00684-6

E.P. Armour, D. McEachern, Z. Wang et al., Sensitivity of human cells to mild hyperthermia1. Cancer Res. 53, 2740–2744 (1993)

T.W. Iorizzo, P.R. Jermain, E. Salomatina et al., Temperature induced changes in the optical properties of skin in vivo. Sci. Rep. 11, 754 (2021). https://doi.org/10.1038/s41598-020-80254-9

S. Cho, M.H. Shin, Y.K. Kim et al., Effects of infrared radiation and heat on human skin aging in vivo. J. Investig. Dermatol. Symp. Proc. 14, 15–19 (2009). https://doi.org/10.1038/jidsymp.2009.7

J. Hendrey, I. Kola, Thermolability of mouse oocytes is due to the lack of expression and/or inducibility of Hsp70. Mol. Reprod. Dev. 28, 1–8 (1991). https://doi.org/10.1002/mrd.1080280102

S. Yang, D. Li, L. Feng et al., Transcriptome analysis reveals the high temperature induced damage is a significant factor affecting the osmotic function of gill tissue in Siberian sturgeon (Acipenser baerii). BMC Genomics 24, 2 (2023). https://doi.org/10.1186/s12864-022-08969-9

A. Haji-Sheikh, F. de Monte, J.V. Beck, Temperature solutions in thin films using thermal wave Green’s function solution equation. Int. J. Heat Mass Transf. 62, 78–86 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.036

Z. Zhu, H. Fan, J. Hua, C. Zhang, A Green’s function solution to the transient heat transfer through the building wall. Adv. Mech. Eng. 8, 168781401663657 (2016). https://doi.org/10.1177/1687814016636572

J. Choi, H. Zhou, R. Landig et al., Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proc. Natl. Acad. Sci. 117, 14636–14641 (2020). https://doi.org/10.1073/pnas.1922730117

B. Kyoo Park, N. Yi, J. Park et al., Thermal conductivity of bovine serum albumin: a tool to probe denaturation of protein. Appl. Phys. Lett. 99, 163702 (2011). https://doi.org/10.1063/1.3652704

A.R.N. Bastos, C.D.S. Brites, P.A. Rojas-Gutierrez et al., Thermal properties of lipid bilayers determined using upconversion nanothermometry. Adv. Funct. Mater. 29, 1905474 (2019). https://doi.org/10.1002/adfm.201905474

S.M. Hirsch, S. Sundaramoorthy, T. Davies et al., FLIRT: fast local infrared thermogenetics for subcellular control of protein function. Nat. Methods 15, 921–923 (2018). https://doi.org/10.1038/s41592-018-0168-y

A.W. Fritsch, A.F. Diaz-Delgadillo, O. Adame-Arana et al., Local thermodynamics govern formation and dissolution of Caenorhabditis elegans P granule condensates. Proc. Natl. Acad. Sci. 118, e2102772118 (2021). https://doi.org/10.1073/pnas.2102772118

C.P. Brangwynne, C.R. Eckmann, D.S. Courson et al., Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science (80−) 324, 1729–1732 (2009). https://doi.org/10.1126/science.1172046

B. Seelbinder, M. Jain, E. Erben, et al., Non-invasive chromatin deformation and measurement of differential mechanical properties in the nucleus. bioRxiv 2021.12.15.472786. (2021) https://doi.org/10.1101/2021.12.15.472786

C.J. Chan, W. Li, G. Cojoc, J. Guck, Volume transitions of isolated cell nuclei induced by rapid temperature increase. Biophys. J. 112, 1063–1076 (2017). https://doi.org/10.1016/j.bpj.2017.01.022

G. Perrella, A. Zioutopoulou, L.R. Headland, E. Kaiserli, The impact of light and temperature on chromatin organization and plant adaptation. J. Exp. Bot. 71, 5247–5255 (2020). https://doi.org/10.1093/jxb/eraa154

M.R. Reichl, D. Braun, Thermophoretic manipulation of molecules inside living cells. J. Am. Chem. Soc. 136, 15955–15960 (2014). https://doi.org/10.1021/ja506169b

Y. Kotsuchibashi, Recent advances in multi-temperature-responsive polymeric materials. Polym. J. 52, 681–689 (2020). https://doi.org/10.1038/s41428-020-0330-0

M. Hippler, E. Blasco, J. Qu et al., Controlling the shape of 3D microstructures by temperature and light. Nat. Commun. 10, 232 (2019). https://doi.org/10.1038/s41467-018-08175-w

B. Drobot, J.M. Iglesias-Artola, K. Le Vay et al., Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018). https://doi.org/10.1038/s41467-018-06072-w

M. Saito, D. Hess, J. Eglinger et al., Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15, 51–61 (2019). https://doi.org/10.1038/s41589-018-0180-7

C. Iserman, C. Desroches Altamirano, C. Jegers et al., Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181, 818-831.e19 (2020). https://doi.org/10.1016/j.cell.2020.04.009

J.M. Iglesias-Artola, B. Drobot, M. Kar et al., Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning. Nat. Chem. 14, 407–416 (2022). https://doi.org/10.1038/s41557-022-00890-8

E. de Nadal, G. Ammerer, F. Posas, Controlling gene expression in response to stress. Nat Rev Genet 12, 833–845 (2011). https://doi.org/10.1038/nrg3055

Z. Xing, A. Caciagli, T. Cao et al., Microrheology of DNA hydrogels. Proc. Natl. Acad. Sci. 115, 8137–8142 (2018). https://doi.org/10.1073/pnas.1722206115

I.D. Stoev, T. Cao, A. Caciagli et al., On the role of flexibility in linker-mediated DNA hydrogels. Soft Matter 16, 990–1001 (2020). https://doi.org/10.1039/C9SM01398A

A. Borštnik, H. Stark, S. Žumer, Temperature-induced flocculation of colloidal particles immersed into the isotropic phase of a nematic liquid crystal. Phys. Rev. E 61, 2831–2839 (2000). https://doi.org/10.1103/PhysRevE.61.2831

S.O. Ilyina, T.S. Anokhina, S.O. Ilyin, Non-solvent- and temperature-induced phase separations of polylaurolactam solutions in benzyl alcohol as methods for producing microfiltration membranes. Colloids Interfaces 7, 10 (2023). https://doi.org/10.3390/colloids7010010

F. Tanaka, T. Koga, H. Kojima, F.M. Winnik, Hydration and phase separation of temperature-sensitive water-soluble polymers. Chin. J. Polym. Sci. 29, 13–21 (2011). https://doi.org/10.1007/s10118-010-1018-2

M. Fränzl, F. Cichos, Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat Commun 13, 656 (2022). https://doi.org/10.1038/s41467-022-28212-z

B. Ciraulo, J. Garcia-Guirado, I. de Miguel et al., Long-range optofluidic control with plasmon heating. Nat. Commun. 12, 2001 (2021). https://doi.org/10.1038/s41467-021-22280-3

G. Baffou, F. Cichos, R. Quidant, Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020). https://doi.org/10.1038/s41563-020-0740-6

Y. Qian, S.L. Neale, J.H. Marsh, Microparticle manipulation using laser-induced thermophoresis and thermal convection flow. Sci. Rep. 10, 19169 (2020). https://doi.org/10.1038/s41598-020-76209-9

S. Nagelberg, J.F. Totz, M. Mittasch et al., Actuation of Janus emulsion droplets via optothermally induced marangoni forces. Phys. Rev. Lett. 127, 144503 (2021). https://doi.org/10.1103/PhysRevLett.127.144503

D. Ershov, M.-S. Phan, J. W. Pylvänäinen, et al., Bringing TrackMate into the era of machine-learning and deep-learning. bioRxiv 2021.09.03.458852. (2021) https://doi.org/10.1101/2021.09.03.458852

J. Rodriguez, F. Peglion, J. Martin et al., aPKC Cycles between functionally distinct PAR protein assemblies to drive cell polarity. Dev. Cell 42, 400-415.e9 (2017). https://doi.org/10.1016/j.devcel.2017.07.007

W. Thielicke, E. Stamhuis, PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30 (2014)

C. M. Gallo, J. T. Wang, F. Motegi, G. Seydoux, Cytoplasmic partitioning of P granule components is not required to specify the germline in C. elegans. Science 330, 1685–1689 (2010). https://doi.org/10.1126/science.1193697