IL-35: a new immunomodulator in autoimmune rheumatic diseases
Tóm tắt
IL-35 is a relatively new cytokine that emerges as an important immunomodulator. IL-35 belongs to IL-12 cytokine family that includes IL-12, IL-23, IL-27, and IL-35. These cytokines are heterodimers that share subunits and their receptors also share subunits. Whereas IL-12 and IL-23 are clearly proinflammatory cytokines, the role of IL-35 is less clear. In mice, IL-35 appears to be anti-inflammatory and to protect from autoimmune inflammatory diseases. IL-35 induces the expansion of a subset of regulatory T cells (Tregs) and Bregs and mediates their suppressive function and inhibits Th17 cells. It also upregulates osteoprotegerin and suppresses RANKL, thus inhibiting bone resorption. In autoimmune rheumatic diseases, findings are conflicting, although in systemic lupus erythematosus, there is reduced function of IL-35. In psoriatic arthritis, a disease characterized by bone erosion and bone formation in peripheral joints and bone formation in spinal joints, serum levels of IL-35 were found increased in one study. Further data are required to define the exact role of IL-35 in human autoimmune rheumatic diseases.
Tài liệu tham khảo
Pope RM, Shahrara S. Possible roles of IL-12-family cytokines in rheumatoid arthritis. Nat Rev Rheumatol. 2013;9(4):252–6. https://doi.org/10.1038/nrrheum.2012.170.
Sun L, He C, Nair L, Yeung J, Egwuagu CE. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine. 2015;75(2):249–55. https://doi.org/10.1016/j.cyto.2015.01.030.
Devergne O, Birkenbach M, Kieff E. Epstein-Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc Natl Acad Sci U S A. 1997;94(22):12041–6.
Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450(7169):566–9. https://doi.org/10.1038/nature06306.
Wang RX, Yu CR, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med. 2014;20(6):633–41. https://doi.org/10.1038/nm.3554.
Li X, Mai J, Virtue A, Yin Y, Gong R, Sha X, et al. IL-35 is a novel responsive anti-inflammatory cytokine--a new system of categorizing anti-inflammatory cytokines. PLoS One. 2012;7(3):e33628. https://doi.org/10.1371/journal.pone.0033628/PONE-D-11-22823.
Bardel E, Larousserie F, Charlot-Rabiega P, Coulomb-L’Hermine A, Devergne O. Human CD4 + CD25 + Foxp3 + regulatory T cells do not constitutively express IL-35. J Immunol. 2008;181(10):6898–905.
Wei X, Zhang J, Gu Q, Huang M, Zhang W, Guo J, et al. Reciprocal Expression of IL-35 and IL-10 Defines Two Distinct Effector Treg Subsets that Are Required for Maintenance of Immune Tolerance. Cell Rep. 2017;21(7):1853–69. https://doi.org/10.1016/j.celrep.2017.10.090.
Tedder TF, Leonard WJ. Autoimmunity: regulatory B cells--IL-35 and IL-21 regulate the regulators. Nat Rev Rheumatol. 2014;10(8):452–3. https://doi.org/10.1038/nrrheum.2014.95.
Shen P, Roch T, Lampropoulou V, O'Connor RA, Stervbo U, Hilgenberg E, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature. 2014;507(7492):366–70. https://doi.org/10.1038/nature12979.
Dambuza IM, He C, Choi JK, Yu CR, Wang R, Mattapallil MJ, et al. IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nat Commun. 2017;8(1):719. https://doi.org/10.1038/s41467-017-00838-4.
Haller S, Duval A, Migliorini R, Stevanin M, Mack V, Acha-Orbea H. Interleukin-35-Producing CD8alpha(+) Dendritic Cells Acquire a Tolerogenic State and Regulate T Cell Function. Front Immunol. 2017;8:98. https://doi.org/10.3389/fimmu.2017.00098.
Meka RR, Venkatesha SH, Dudics S, Acharya B, Moudgil KD. IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun Rev. 2015;14(12):1131–41. https://doi.org/10.1016/j.autrev.2015.08.001.
Neurath MF. IL-12 family members in experimental colitis. Mucosal Immunol. 2008;1(Suppl 1):S28–30. https://doi.org/10.1038/mi.2008.45.
Choi JK, Dambuza IM, He C, Yu CR, Uche AN, Mattapallil MJ, et al. IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis. Front Immunol. 2017;8:1258. https://doi.org/10.3389/fimmu.2017.01258.
Cho KA, Lee JK, Kim YH, Park M, Woo SY, Ryu KH. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell Mol Immunol. 2017; https://doi.org/10.1038/cmi.2016.59.
Chehboun S, Labrecque-Carbonneau J, Pasquin S, Meliani Y, Meddah B, Ferlin W, et al. Epstein-Barr virus-induced gene 3 (EBI3) can mediate IL-6 trans-signaling. J Biol Chem. 2017;292(16):6644–56. https://doi.org/10.1074/jbc.M116.762021.
Sonmez C, Yucel AA, Yesil TH, Kucuk H, Sezgin B, Mercan R, et al. Correlation between IL-17A/F, IL-23, IL-35 and IL-12/-23 (p40) levels in peripheral blood lymphocyte cultures and disease activity in Behcet's patients. Clin Rheumatol. 2018; https://doi.org/10.1007/s10067-018-4049-7.
He D, Liu M, Liu B. Interleukin-35 as a New Biomarker of Renal Involvement in Lupus Nephritis Patients. Tohoku J Exp Med. 2018;244(4):263–70. https://doi.org/10.1620/tjem.244.263.
Ouyang H, Shi YB, Liu ZC, Wang Z, Feng S, Kong SM, et al. Decreased interleukin 35 and CD4 + EBI3 + T cells in patients with active systemic lupus erythematosus. Am J Med Sci. 2014;348(2):156–61. https://doi.org/10.1097/MAJ.000000000000021500000441-201408000-00012.
Cai Z, Wong CK, Kam NW, Dong J, Jiao D, Chu M, et al. Aberrant expression of regulatory cytokine IL-35 in patients with systemic lupus erythematosus. Lupus. 2015;24(12):1257–66. https://doi.org/10.1177/0961203315585815.
Cai Z, Wong CK, Dong J, Chu M, Jiao D, Kam NW, et al. Remission of systemic lupus erythematosus disease activity with regulatory cytokine interleukin (IL)-35 in Murphy Roths Large (MRL)/lpr mice. Clin Exp Immunol. 2015;181(2):253–66. https://doi.org/10.1111/cei.12639.
Zhang Y, Li J, Zhou N, Zhang Y, Wu M, Xu J, et al. The unknown aspect of BAFF: inducing IL-35 production by a CD5(+)CD1d(hi)FcgammaRIIb(hi) regulatory B-cell subset in lupus. J Invest Dermatol. 2017;137(12):2532–43. https://doi.org/10.1016/j.jid.2017.07.843.
Nakano S, Morimoto S, Suzuki S, Tsushima H, Yamanaka K, Sekigawa I, et al. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis. Rheumatology (Oxford). 2015;54(8):1498–506. https://doi.org/10.1093/rheumatology/keu528.
Ning X, Jian Z, Wang W. Low Serum Levels of Interleukin 35 in Patients with Rheumatoid Arthritis. Tohoku J Exp Med. 2015;237(2):77–82. https://doi.org/10.1620/tjem.237.77.
Yin L, Ge Y, Yang H, Peng Q, Lu X, Zhang Y, et al. The clinical utility of serum IL-35 in patients with polymyositis and dermatomyositis. Clin Rheumatol. 2016;35(11):2715–21. https://doi.org/10.1007/s10067-016-3347-1.
Senolt L, Sumova B, Jandova R, Hulejova H, Mann H, Pavelka K, et al. Interleukin 35 Synovial Fluid Levels Are Associated with Disease Activity of Rheumatoid Arthritis. PLoS One. 2015;10(7):e0132674. https://doi.org/10.1371/journal.pone.0132674PONE-D-15-13352.
Filkova M, Vernerova Z, Hulejova H, Prajzlerova K, Veigl D, Pavelka K, et al. Pro-inflammatory effects of interleukin-35 in rheumatoid arthritis. Cytokine. 2015;73(1):36–43. https://doi.org/10.1016/j.cyto.2015.01.019.
Kam NW, Liu D, Cai Z, Mak WY, Wong CK, Chiu KH, et al. Synoviocytes-derived Interleukin 35 Potentiates B Cell Response in Patients with Osteoarthritis and Rheumatoid Arthritis. J Rheumatol. 2017; https://doi.org/10.3899/jrheum.161363.
Kudo H, Wang Z, Jinnin M, Nakayama W, Inoue K, Honda N, et al. EBI3 Downregulation Contributes to Type I Collagen Overexpression in Scleroderma Skin. J Immunol. 2015;195(8):3565–73. https://doi.org/10.4049/jimmunol.1402362.
Tomcik M, Zerr P, Palumbo-Zerr K, Storkanova H, Hulejova H, Spiritovic M, et al. Interleukin-35 is upregulated in systemic sclerosis and its serum levels are associated with early disease. Rheumatology (Oxford). 2015;54(12):2273–82. https://doi.org/10.1093/rheumatology/kev260.
Dantas AT, Goncalves SM, Pereira MC, Goncalves RS, Marques CD, Rego MJ, et al. Increased IL-35 serum levels in systemic sclerosis and association with pulmonary interstitial involvement. Clin Rheumatol. 2015;34(9):1621–5. https://doi.org/10.1007/s10067-015-3006-y.
Fogel O, Riviere E, Seror R, Nocturne G, Boudaoud S, Ly B, et al. Role of the IL-12/IL-35 balance in patients with Sjogren syndrome. J Allergy Clin Immunol. 2017; https://doi.org/10.1016/j.jaci.2017.07.041.
Li J, Liu L, Rui W, Li X, Xuan D, Zheng S, et al. New Interleukins in Psoriasis and Psoriatic Arthritis Patients: The Possible Roles of Interleukin-33 to Interleukin-38 in Disease Activities and Bone Erosions. Dermatology. 2017;233(1):37–46. https://doi.org/10.1159/000471798.
Niedbala W, Wei XQ, Cai B, Hueber AJ, Leung BP, McInnes IB, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol. 2007;37(11):3021–9. https://doi.org/10.1002/eji.200737810.
Kochetkova I, Golden S, Holderness K, Callis G, Pascual DW. IL-35 stimulation of CD39 + regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. J Immunol. 2010;184(12):7144–53. https://doi.org/10.4049/jimmunol.0902739.
Li Y, Wu S, Li Y, Jiang S, Lin T, Xia L, et al. Interleukin-35 (IL-35) inhibits proliferation and promotes apoptosis of fibroblast-like synoviocytes isolated from mice with collagen-induced arthritis. Mol Biol Rep. 2016;43(9):947–56. https://doi.org/10.1007/s11033-016-4034-7.
Jiang S, Li Y, Lin T, Yuan L, Li Y, Wu S, et al. IL-35 Inhibits Angiogenesis through VEGF/Ang2/Tie2 Pathway in Rheumatoid Arthritis. Cell Physiol Biochem. 2016;40(5):1105–16. https://doi.org/10.1159/000453165.
Wu S, Li Y, Li Y, Yao L, Lin T, Jiang S, et al. Interleukin-35 attenuates collagen-induced arthritis through suppression of vascular endothelial growth factor and its receptors. Int Immunopharmacol. 2016;34:71–7. https://doi.org/10.1016/j.intimp.2016.02.018.
Dixon KO, van der Kooij SW, Vignali DA, van Kooten C. Human tolerogenic dendritic cells produce IL-35 in the absence of other IL-12 family members. Eur J Immunol. 2015;45(6):1736–47. https://doi.org/10.1002/eji.201445217.
Li Y, Li D, Li Y, Wu S, Jiang S, Lin T, et al. Interleukin-35 upregulates OPG and inhibits RANKL in mice with collagen-induced arthritis and fibroblast-like synoviocytes. Osteoporos Int. 2016;27(4):1537–46. https://doi.org/10.1007/s00198-015-3410-9.
Thiolat A, Denys A, Petit M, Biton J, Lemeiter D, Herve R, et al. Interleukin-35 gene therapy exacerbates experimental rheumatoid arthritis in mice. Cytokine. 2014;69(1):87–93. https://doi.org/10.1016/j.cyto.2014.05.015.
Gao W, Sweeney C, Walsh C, Rooney P, McCormick J, Veale DJ, et al. Notch signalling pathways mediate synovial angiogenesis in response to vascular endothelial growth factor and angiopoietin 2. Ann Rheum Dis. 2013;72(6):1080–8. https://doi.org/10.1136/annrheumdis-2012-201978.
Sakkas LI, Chikanza IC, Platsoucas CD. Mechanisms of Disease: the role of immune cells in the pathogenesis of systemic sclerosis. Nat Clin Pract Rheumatol. 2006;2(12):679–85. https://doi.org/10.1038/ncprheum0346.
Sakkas LI, Bogdanos DP. Systemic sclerosis: New evidence re-enforces the role of B cells. Autoimmun Rev. 2016;15(2):155–61. https://doi.org/10.1016/j.autrev.2015.10.005.
Mavropoulos A, Simopoulou T, Varna A, Liaskos C, Katsiari C, Bogdanos DP, et al. B regulatory cells are decreased and functionally impaired in patients with systemic sclerosis. Arthritis Rheumatol. 2015; https://doi.org/10.1002/art.39437.
Matsushita T, Hamaguchi Y, Hasegawa M, Takehara K, Fujimoto M. Decreased levels of regulatory B cells in patients with systemic sclerosis: association with autoantibody production and disease activity. Rheumatology (Oxford). 2016;55(2):263–7. https://doi.org/10.1093/rheumatology/kev331.
Malik A, Hayat G, Kalia JS, Guzman MA. Idiopathic Inflammatory Myopathies: Clinical Approach and Management. Front Neurol. 2016;7:64. https://doi.org/10.3389/fneur.2016.00064.
Sakkas LI, Bogdanos DP. Are psoriasis and psoriatic arthritis the same disease? The IL-23/IL-17 axis data. Autoimmun Rev. 2017;16(1):10–5. https://doi.org/10.1016/j.autrev.2016.09.015.