IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma
Tóm tắt
The Th17 subset and IL-17 have been found in increased frequencies within certain tumors. However, their relevance in cancer biology remains controversial. This study aimed to clarify the biological action of IL-17 on hepatocellular carcinoma (HCC). Effects and underlying molecular mechanisms of IL-17 on human HCC were explored in vitro using exogenous IL-17 stimulation and in nude mice by implanting IL-17 overexpressed HCC cells. The clinical significance of IL-17 was investigated in tissue microarrays containing HCC tissues from 323 patients following hepatectomy using immunohistochemistry. Although exogenous IL-17 showed no direct effect on the growth rate of HCC cells in vitro, PCR and ELISA showed that IL-17 selectively augmented the secretion of diverse proinvasive factors and transwell showed a direct promotion of invasion of HCC cells by IL-17. Furthermore, transfection of IL-17 into HCC cells significantly promoted neoangiogenesis, neutrophil recruitment and tumor growth in vivo. Using siRNA mediated knockdown of AKT and STAT3, we suggested that the effects of IL-17 were operated through activation of the AKT signaling in HCC, which resulted in IL-6 production. Then, IL-6 in turn activated JAK2/STAT3 signaling and subsequently up-regulated its downstream targets IL-8, MMP2, and VEGF. Supporting these findings, in human HCC tissues, immunostaining indicated that IL-17 expression was significantly and positively associated with STAT3 phosphorylation, neutrophil infiltration and increased tumor vascularity. The clinical significance of IL-17 was authenticated by revealing that the combination of intratumoral IL-17+ cells and phospho-STAT3 served as a better prognosticator for postoperative tumor recurrence than either marker alone. IL-17 mediated tumor-promoting role involves a direct effect on HCC cells through IL-6/JAK2/STAT3 induction by activating the AKT pathway.
Tài liệu tham khảo
El-Serag HB, Rudolph KL: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007, 132: 2557-2576. 10.1053/j.gastro.2007.04.061
Ferrone C, Dranoff G: Dual roles for immunity in gastrointestinal cancers. J Clin Oncol. 2010, 28: 4045-4051. 10.1200/JCO.2010.27.9992
Miossec P, Korn T, Kuchroo VK: Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009, 361: 888-898. 10.1056/NEJMra0707449
Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, Chang A, Coukos G, Liu R, Zou W: Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood. 2009, 114: 1141-1149. 10.1182/blood-2009-03-208249
Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagda N, Lee C, Marberger MJ: Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate. 2003, 56: 171-182. 10.1002/pros.10238
Zhang B, Rong G, Wei H, Zhang M, Bi J, Ma L, Xue X, Wei G, Liu X, Fang G: The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun. 2008, 374: 533-537. 10.1016/j.bbrc.2008.07.060
Bronte V: Th17 and cancer: friends or foes?. Blood. 2008, 112: 214-
Murugaiyan G, Saha B: Protumor vs antitumor functions of IL-17. J Immunol. 2009, 183: 4169-4175. 10.4049/jimmunol.0901017
Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze MT: Interleukin-17 promotes angiogenesis and tumor growth. Blood. 2003, 101: 2620-2627. 10.1182/blood-2002-05-1461
Tartour E, Fossiez F, Joyeux I, Galinha A, Gey A, Claret E, Sastre-Garau X, Couturier J, Mosseri V, Vives V, Banchereau J, Fridman WH, Wijdenes J, Lebecque S, Sautes-Fridman C: Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res. 1999, 59: 3698-3704.
Benchetrit F, Ciree A, Vives V, Warnier G, Gey A, Sautes-Fridman C, Fossiez F, Haicheur N, Fridman WH, Tartour E: Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood. 2002, 99: 2114-2121. 10.1182/blood.V99.6.2114
Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM, Meeker AK, Isaacs WB, Drake CG: Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res. 2008, 14: 3254-3261. 10.1158/1078-0432.CCR-07-5164
Viaud S, Flament C, Zoubir M, Pautier P, LeCesne A, Ribrag V, Soria JC, Marty V, Vielh P, Robert C, Chaput N, Zitvogel L: Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res. 2011, 71: 661-665. 10.1158/0008-5472.CAN-10-1259
Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, Wu C, Li SP, Zheng L: Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 2009, 50: 980-989. 10.1016/j.jhep.2008.12.033
Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H: IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009, 206: 1457-1464. 10.1084/jem.20090207
Gaffen SL: Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009, 9: 556-567. 10.1038/nri2586
Yu H, Pardoll D, Jove R: STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009, 9: 798-809. 10.1038/nrc2734
Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, Li Y, Robles AI, Chen Y, Ma ZC, Wu ZQ, Ye SL, Liu YK, Tang ZY, Wang XW: Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med. 2003, 9: 416-423. 10.1038/nm843
Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, Xu Y, Fan J: Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009, 15: 971-979. 10.1158/1078-0432.CCR-08-1608
Shi GM, Ke AW, Zhou J, Wang XY, Xu Y, Ding ZB, Devbhandari RP, Huang XY, Qiu SJ, Shi YH, Dai Z, Yang XR, Yang GH, Fan J: CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma. Hepatology. 2010, 52: 183-196.
Fu J, Chen Y, Cao J, Luo T, Qian YW, Yang W, Ren YB, Su B, Cao GW, Yang Y, Yan YQ, Shen F, Wu MC, Feng GS, Wang HY: p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1alpha pathways. Hepatology. 2011, 53: 181-192. 10.1002/hep.24015
Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA: Inflammation and Liver Cancer. Annals of the New York Academy of Sciences. 2009, 1155: 206-221. 10.1111/j.1749-6632.2009.03704.x
Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY: Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007, 25: 2586-2593. 10.1200/JCO.2006.09.4565
Camp RL, Dolled-Filhart M, Rimm DL: X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004, 10: 7252-7259. 10.1158/1078-0432.CCR-04-0713
Sparna T, Retey J, Schmich K, Albrecht U, Naumann K, Gretz N, Fischer HP, Bode JG, Merfort I: Genome-wide comparison between IL-17 and combined TNF-alpha/IL-17 induced genes in primary murine hepatocytes. BMC Genomics. 2010, 11: 226- 10.1186/1471-2164-11-226
Inozume T, Hanada K, Wang QJ, Yang JC: IL-17 secreted by tumor reactive T cells induces IL-8 release by human renal cancer cells. J Immunother. 2009, 32: 109-117. 10.1097/CJI.0b013e31819302da
Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, Hishinuma T, Goto J, Lotze MT, Kolls JK, Sasaki H: IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol. 2005, 175: 6177-6189.
Onishi RM, Gaffen SL: Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2011, 129: 311-321.
Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C, Kanamoto M, Nishihara M, Iwakura Y, Hirano T: Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity. 2008, 29: 628-636. 10.1016/j.immuni.2008.07.018
Wang L, Yi T, Zhang W, Pardoll DM, Yu H: IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 2010, 70. 10.12-10120.
Yu H, Kortylewski M, Pardoll D: Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007, 7: 41-51. 10.1038/nri1995
Huang F, Kao CY, Wachi S, Thai P, Ryu J, Wu R: Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-kappaB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J Immunol. 2007, 179: 6504-6513.
Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, Kim HY: IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther. 2004, 6: R120-128. 10.1186/ar1038
Roussel L, Houle F, Chan C, Yao Y, Berube J, Olivenstein R, Martin JG, Huot J, Hamid Q, Ferri L, Rousseau S: IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol. 2010, 184: 4531-4537. 10.4049/jimmunol.0903162
Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao YS, Xu YF: Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol. 2010, 54: 497-505.