Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
IL-17 Góp Phần Vào Sự Phát Triển Của Tình Trạng Đào Thải Mạn Tính Trong Mô Hình Ghép Tim Ở Chuột
Tóm tắt
Mặc dù interleukin-17 (IL-17) đã được báo cáo tham gia vào cơ chế sinh bệnh của các rối loạn nhiễm trùng, tự miễn và dị ứng, nhưng vai trò chính xác của nó trong tình trạng đào thải ghép vẫn chưa rõ ràng. Nghiên cứu này chỉ ra rằng IL-17 góp phần vào cơ chế sinh bệnh của tình trạng đào thải ghép mạn tính. Sử dụng mô hình ghép tim dị hợp chủng ở chuột, những con chuột thụ gốc thiếu hụt IL-17 cho thấy sự giảm thiểu trong việc thu hút tế bào viêm tại ghép, giảm sản xuất IL-6, MCP-1, và KC, cùng với sự giảm thiểu bệnh lý động mạch vành ghép (GCAD). Các tế bào T gamma delta (γδ) trong ghép dường như là nguồn sản xuất IL-17 chủ yếu. Do đó, việc trung hòa IL-17 có thể cung cấp một mục tiêu tiềm năng cho việc điều trị mới đối với tình trạng đào thải ghép tim.
Từ khóa
#IL-17 #đào thải ghép #ghép tim #tế bào T gamma delta #viêm ghépTài liệu tham khảo
Taylor DO, Edwards LB, Boucek MM, Trulock EP, Aurora P, Christie J, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report—2007. J Heart Lung Transplant. 2007;26:769–81.
Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003;14:155–74.
Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.
Oboki K, Ohno T, Saito H, Nakae S. Th17 and allergy. Allergol Int. 2008;57:121–34.
Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev. 2008;226:57–79.
Van Kooten C, Boonstra JG, Paape ME, Fossiez F, Banchereau J, Lebecque S, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol. 1998;9:1526–34.
Loong CC, Hsieh HG, Lui WY, Chen A, Lin CY. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol. 2002;197:322–32.
Tesar BM, Du W, Shirali AC, Walker WE, Shen H, Goldstein DR. Aging augments IL-17 T-cell alloimmune responses. Am J Transplant. 2009;9:54–63.
Antonysamy MA, Fanslow WC, Fu F, Li W, Qian S, Troutt AB, et al. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol. 1999;162:577–84.
Li J, Simeoni E, Fleury S, Dudler J, Fiorini E, Kappenberger L, et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model. Eur J Cardiothorac Surg. 2006;29:779–83.
Tang JL, Subbotin VM, Antonysamy MA, Troutt AB, Rao AS, Thomson AW. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation. 2001;72:348–50.
Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52.
Rickel EA, Siegel LA, Yoon BR, Rottman JB, Kugler DG, Swart DA, et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol. 2008;181:4299–310.
Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 2003;17:375–87.
Fischbein MP, Ardehali A, Yun J, Schoenberger S, Laks H, Irie Y, et al. CD40 signaling replaces CD4+ lymphocytes and its blocking prevents chronic rejection of heart transplants. J Immunol. 2000;165:7316–22.
Tanaka M, Fedoseyeva EV, Robbins RC. Graft coronary artery disease in murine cardiac allografts: proposal to meet the need for standardized assessment. J Heart Lung Transplant. 2005;24:316–22.
Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D’Addio F, Mfarrej B, Donnarumma M, et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med. 2008;205:3133–44.
Glimcher LH, Townsend MJ, Sullivan BM, Lord GM. Lord. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat Rev Immunol. 2004;4:900–11.
Fujiwara M, Hirose K, Kagami S, Takatori H, Wakashin H, Tamachi T, et al. T-bet inhibits both TH2 cell-mediated eosinophil recruitment and TH17 cell-mediated neutrophil recruitment into the airways. J Allergy Clin Immunol. 2007;119:662–70.
Fischbein MP, Yun J, Laks H, Irie Y, Oslund-Pinderski L, Fishbein MC, et al. Regulated interleukin-10 expression prevents chronic rejection of transplanted hearts. J Thorac Cardiovasc Surg. 2003;126:216–23.
Fischbein MP, Yun J, Laks H, Irie Y, Fishbein MC, Espejo M, et al. CD8+ lymphocytes augment chronic rejection in a MHC class II mismatched model. Transplantation. 2001;71:1146–53.
Salomon RN, Hughes CC, Schoen FJ, Payne DD, Pober JS, Libby P. Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells. Am J Pathol. 1991;138:791–8.
Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183:2593–603.
Starnes T, Robertson M, Sledge G, Kelich S, Nakshatri H, Broxmeyer H, et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes. Regulates angiogenesis and endothelial cell cytokine production. J Immunology. 2001;167:4137–40.
Eid R, Rao D, Zhou J, Lo S, Ranjbaran H, Gallo A, et al. Interleukin-17 and Inteferon-γ are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation. 2009;119:1424–32.
Nagano H, Mitchell RN, Taylor MK, Hasegawa S, Tilney NL, Libby P. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest. 1997;100:550–7.
Tellides G, Tereb DA, Kirkiles-Smith NC, Kim RW, Wilson JH, Schechner JS, et al. Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature. 2000;403:207–11.
Jensen KD, Su X, Shin S, Li L, Youssef S, Yamasaki S, et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity. 2008;29:90–100.
Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, et al. Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15:946–50.
Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation. Semin Immunol. 2007;19:409–17.
McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, et al. TGF-ß and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7.
Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.