IKARUS-Onto: a methodology to develop fuzzy ontologies from crisp ones

Knowledge and Information Systems - Tập 32 - Trang 667-695 - 2011
Panos Alexopoulos1,2, Manolis Wallace3, Konstantinos Kafentzis1, Dimitris Askounis2
1IMC Technologies, Athens, Greece
2School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
3Department of Computer Science and Technology, University of Peloponnese, Tripolis, Greece

Tóm tắt

Fuzzy Ontologies comprise a relatively new knowledge representation paradigm that is being increasingly applied in application scenarios in which the treatment and utilization of vague or imprecise knowledge are important. However, the majority of research in the area has mostly focused on the development of conceptual formalisms for representing (and reasoning with) fuzzy ontologies, while the methodological issues entailed within the development process of such an ontology have been so far neglected. With that in mind, we present in this paper IKARUS-Onto, a comprehensive methodology for developing fuzzy ontologies from existing crisp ones that significantly enhances the effectiveness of the fuzzy ontology development process and the quality, in terms of accuracy, shareability and reusability, of the process’s output.

Tài liệu tham khảo

Agarwal S, Lamparter S (2005) A semantic matchmaking portal for electronic markets. In: Proceedings of the seventh IEEE international conference on E-commerce technology, 19–22 July 2005 Alexopoulos P, Wallace M, Kafentzis K, Thomopoulos (2009) A fuzzy knowledge-based decision support system for tender call evaluation. In: Proceedings of the 5th IFIP conference on artificial intelligence applications and innovations (AIAI 2009) Alexopoulos P, Wallace M, Kafentzis K, Askounis D (2010) Utilizing imprecise knowledge in ontology-based CBR systems through fuzzy algebra. Int J Fuzzy Syst 12(1): 1–14 Baeza-Yates R, Tiberi A (2007) Extracting semantic relations from query logs. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’07). ACM, New York, pp 76–85 Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness D, Patel Schneider P, Stein LA (2004) OWL web ontology language reference. W3C recommendation, 10 Feb 2004 Bobillo F, Delgado M, Gomez-Romero J (2008) DeLorean: a reasoner for fuzzy OWL 1.1. In: Proceedings of the 4th international workshop on uncertainty reasoning for the semantic web (URSW 2008). CEUR workshop proceedings 423. Karlsruhe, Oct 2008 Bobillo F, Straccia U (2008) fuzzyDL: an expressive fuzzy description logic reasoner. In: Proceedings of the 2008 international conference on fuzzy systems Bouamrane M-M, Rector A, Hurrell M (2010) Using OWL ontologies for adaptive patient information modeling and preoperative clinical decision support. Knowledge and information systems. Springer, London, p 114 Calegari S, Sanchez E (2007) A fuzzy ontology-approach to improve semantic information retrieval. In: Bobillo F, da Costa PCG, D’Amato C, Fanizzi N, Fung F, Lukasiewicz T, Martin T, Nickles M, Peng Y, Pool M, Smrz P, Vojtas P (eds) Proceedings of the third ISWC workshop on uncertainty reasoning for the semantic web—URSW’07, vol 327 Cimiano P (2006) Ontology learning and population from text: algorithms, evaluation and applications. Springer-Verlag, New York, Inc., Secaucus Chandrasekaran B, Josephson JR, Benjamins VR (1999) What are ontologies, and why do we need them. IEEE Intell Syst 14(1): 20–26 Chen W, Yang Q, Zhu L, Wen B (2009) Research on automatic fuzzy ontology generation from fuzzy context. In: Proceedings of the 2009 second international conference on intelligent computation technology and automation—volume 02 (ICICTA ’09), vol 2. IEEE Computer Society, Washington, pp 764–767 Chen CL, Tseng F, Liang T (2010) An integration of fuzzy association rules and WordNet for document clustering. Knowledge and information systems. Springer, London, p 122 Escovar ELG, Yaguinima CA, Biajic M (2006) Using fuzzy ontologies to extend semantically similar data mining. In: XXI Simposio Brasileiro de Banco de Dados (SBBD), Florianopolis, p 16–30 Fernandez Lopez M, Gomez Perez A, Juristo N (1997) Methontology: from ontological art towards ontological engineering. In: Spring symposium on ontological engineering of AAAI, pp 33–40 Fodeh S, Punch B, Tan, P-N (2011) On ontology-driven document clustering using core semantic features. Knowledge and information systems. Springer, London, p 127 Gomez-Perez A, Corcho O, Fernandez-Lopez M (2004) Ontological engineering. Springer-Verlag London Limited Gruninger M, Fox MS (1995) Methodology for the design and evaluation of ontologies. In: IJCAI95 on workshop basic ontological issues in knowledge sharing Jarrar M, Meersman R (2008) Ontology engineering—the DOGMA approach. In: Advances in web semantics, vol I, LNCS 4891. Springer, Berlin Jurisica I, Mylopoulos J, Yu E (2004) Ontologies for knowledge management: an information systems perspective. Knowledge and information systems, vol 6, no. 4. Springer, London, pp 380–401 Hyde D (2008) Vagueness, logic and ontology. Ashgate new critical thinking in philosophy Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic, theory and applications. Prentice Hall, Upper Saddle River Kotis K, Vouros G (2006) Human-centered ontology engineering: the HCOME methodology. Knowledge and information systems (KAIS), vol 10. Springer, London, pp 109–131 Lau RY, Song D, Li Y, Cheung TCH, Hao JX (2009) Toward a fuzzy domain ontology extraction method for adaptive e-learning. IEEE Trans Knowl Data Eng 21(6): 800–813 Lee CS, Jian ZW, Huang LK (2005) A fuzzy ontology and its application to news summarization. IEEE Trans Syst Man Cybern B 35(5): 859–880 Liu K, Fang B, Zhang W (2010) Ontology emergence from folksonomies. In: Proceedings of the 19th ACM international conference on information and knowledge management (CIKM ’10). ACM, New York Mailis T, Stoilos G, Stamou G (2010) Expressive reasoning with horn rules and fuzzy description logics. Knowledge and information systems, vol 25, no. 1. Springer, London, pp 105–136 McGee V, McLaughlin B (1994) Distinctions without a difference. South J Philos 33(suppl): 203–251 Parry D (2004) A fuzzy ontology for medical document retrieval. In: Hogan J, Montague P, Purvis M, Steketee C (eds) Proceedings of the second workshop on Australasian information security, data mining and web intelligence, and software internationalisation—vol 32. Dunedin. ACM international conference proceeding series, vol 54. Australian Computer Society, Darlinghurst, pp 121–126 Pinto S, Martins J (2004) Ontologies: how can they be built?. Knowl Inf Syst 6: 441–464 Ramezani M, Witschel HF, Braun S, Zacharias V (2010) Using machine learning to support continuous ontology development. In: Cimiano P, Sofia Pinto H (eds) Proceedings of the 17th international conference on Knowledge engineering and management by the masses (EKAW’10). Springer, Berlin, pp 381–390 Reichartz F, Korte H, Paass G (2010) Semantic relation extraction with kernels over typed dependency trees. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’10). ACM, New York, pp 773–782 Sanchez D, Isern D, Millan M (2010) Content annotation for the semantic web: an automatic web-based approach. Knowledge and information systems. Springer, London, p 126 Shapiro S (2006) Vagueness in context. Oxford University Press, USA Simou N, Kollias S (2007) FiRE: a fuzzy reasoning engine for impecise knowledge. K-space PhD students workshop. Berlin, 14 Sept 2007 Stoilos G, Straccia U, Stamou G, Pan JZ (2006) General concept inclusions in fuzzy description logics. In: 17th European conference on artificial intelligence (ECAI 06). Riva del Garda Stoilos G, Stamou G, Pan JZ, Simou N, Tzouvaras V (2008) Reasoning with the fuzzy description logic f-SHIN: theory, practice and applications. In: Costa PCG, d’Amato C et al (eds) Uncertainty reasoning for the semantic web I Szumlanski S, Gomez F (2010) Automatically acquiring a semantic network of related concepts. In: Proceedings of the 19th ACM international conference on information and knowledge management (CIKM-10). Toronto, pp 19–28 Tho QT, Hui SC, Fong ACM, Cao TH (2006) Automatic fuzzy ontology generation for semantic web. IEEE Trans Knowl Data Eng 18(6): 842–856 Thomas C, Sheth A (2006) On the expressiveness of the languages for the semantic web—making a case for ‘A little more’. In: Sanchez E (ed) Fuzzy logic and the semantic web. Elsevier, Amsterdam Uschold M, King M (1995) Towards a methodology for building ontologies. In: IJCAI95 workshop on basic ontological issues in knowledge sharing, pp 6.1–6.10 Vrandecic D, Pinto HS, Sure Y, Tempich C (2005) The DILIGENT knowledge processes. J Knowl Manag 9(5): 85–96 Wallace M, Mylonas P, Akrivas G, Avrithis Y, Kollias S (2006) Automatic thematic categorization of multimedia documents using ontological information and fuzzy algebra. In: Ma Z (ed) Studies in fuzziness and soft computing, soft computing in ontologies and semantic web, vol 204. Springer, Berlin Zadeh LA (2003) From search engines to question-answering systems the need for new tools. In: The 12th IEEE international conference on fuzzy systems 2003, vol 2, pp 1107–1109 Zhai J, Liang Y, Jiang J, Yu Y (2008) Fuzzy ontology models based on fuzzy linguistic variable for knowledge management and information retrieval. In: Intelligent information processing IV, pp 58–67 Zhang F, Ma ZM, Fan G, Wang X (2010) Automatic fuzzy semantic web ontology learning from fuzzy object-oriented database model. In: Bringas PG, Hameurlain A, Quirchmayr G (eds) Proceedings of the 21st international conference on database and expert systems applications: part I (DEXA’10). Springer, Berlin, pp 16–30 Zhang F, Ma ZM, Cheng J, Meng X (2009) Fuzzy semantic web ontology learning from fuzzy UML model. In: Proceeding of the 18th ACM conference on Information and knowledge management (CIKM ’09). ACM, New York Zhou L (2007) Ontology learning: state of the art and open issues. Inf Technol Manag 8(3): 241–252