IFN-γ-Inducible Protein 10 (IP-10; CXCL10)-Deficient Mice Reveal a Role for IP-10 in Effector T Cell Generation and Trafficking

Journal of Immunology - Tập 168 Số 7 - Trang 3195-3204 - 2002
Jennifer Dufour1, Michelle Dziejman1, Michael T. Liu2, Josephine H. Leung1, Thomas E. Lane2, Andrew D. Luster1
1*Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; and
2Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697

Tóm tắt

AbstractIFN-γ-inducible protein 10 (IP-10, CXCL10), a chemokine secreted from cells stimulated with type I and II IFNs and LPS, is a chemoattractant for activated T cells. Expression of IP-10 is seen in many Th1-type inflammatory diseases, where it is thought to play an important role in recruiting activated T cells into sites of tissue inflammation. To determine the in vivo function of IP-10, we constructed an IP-10-deficient mouse (IP-10−/−) by targeted gene disruption. Immunological analysis revealed that IP-10−/− mice had impaired T cell responses. T cell proliferation to allogeneic and antigenic stimulation and IFN-γ secretion in response to antigenic challenge were impaired in IP-10−/− mice. In addition, IP-10−/− mice exhibited an impaired contact hypersensitivity response, characterized by decreased ear swelling and reduced inflammatory cell infiltrates. T cells recovered from draining lymph nodes also had a decreased proliferative response to Ag restimulation. Furthermore, IP-10−/− mice infected with a neurotropic mouse hepatitis virus had an impaired ability to control viral replication in the brain. This was associated with decreased recruitment of CD4+ and CD8+ lymphocytes into the brain, reduced levels of IFN-γ and the IFN-γ-induced chemokines monokine induced by IFN-γ (Mig, CXCL9) and IFN-inducible T cell α chemoattractant (I-TAC, CXCL11) in the brain, decreased numbers of virus-specific IFN-γ-secreting CD8+ cells in the spleen, and reduced levels of demyelination in the CNS. Taken together, our data suggest a role for IP-10 in both effector T cell generation and trafficking in vivo.

Từ khóa


Tài liệu tham khảo

Luster, A. D., J. C. Unkeless, J. V. Ravetch. 1985. γ-Interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315: 672

Gattass, C. R., L. B. King, A. D. Luster, J. D. Ashwell. 1994. Constitutive expression of IP-10 in lymphoid organs and inducible expression in T cells and thymocytes. J. Exp. Med. 179: 1373

Luster, A. D., J. V. Ravetch. 1987. Biochemical characterization of a γ interferon-inducible cytokine (IP-10). J. Exp. Med. 166: 1084

Vanguri, P., J. M. Farber. 1990. Identification of CRG-2: an interferon-inducible mRNA predicted to encode a murine monokine. J. Biol. Chem. 265: 15049

Ohmori, Y., T. A. Hamilton. 1990. A macrophage LPS-inducible early gene encodes the murine homologue of IP-10. Biochem. Biophys. Res. Commun. 168: 1261

Gottlieb, A. B., A. D. Luster, D. N. Posnett, D. M. Carter. 1988. Detection of a γ interferon-induced protein IP-10 in psoriatic plaques. J. Exp. Med. 168: 941

Flier, J., D. M. Boorsma, P. J. van Beek, C. Nieboer, T. J. Stoof, R. Willemze, C. P. Tensen. 2001. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J. Pathol. 194: 398

Sorensen, T. L., M. Tani, J. Jensen, V. Pierce, C. Lucchinetti, V. A. Folcik, S. Qin, J. Rottman, F. Sellebjerg, R. M. Strieter, et al 1999. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 103: 807

Balashov, K., J. Rottman, H. Weiner, W. Hancock. 1999. CCR5+ and CXCR3+ T cells are increased in multiple sclerosis and their ligands MIP-1 and IP-10 are expressed in demyelinating brain lesions. Proc. Natl. Acad. Sci. USA 96: 6873

Mach, F., A. Sauty, A. S. Iarossi, G. K. Sukhova, K. Neote, P. Libby, A. D. Luster. 1999. The interferon-γ inducible CXC chemokines IP-10, Mig, and I-TAC are differentially expressed by human atheroma-associated cells: implications for lymphocyte recruitment in atherogenesis. J. Clin. Invest. 104: 1041

Patel, D. D., J. P. Zachariah, L. P. Whichard. 2001. CXCR3 and CCR5 ligands in rheumatoid arthritis synovium. Clin. Immunol. 98: 39

Melter, M., A. Exeni, M. E. Reinders, J. C. Fang, G. McMahon, P. Ganz, W. W. Hancock, D. M. Briscoe. 2001. Expression of the chemokine receptor CXCR3 and its ligand IP-10 during human cardiac allograft rejection. Circulation 104: 2558

Agostini, C., F. Calabrese, F. Rea, M. Facco, A. Tosoni, M. Loy, G. Binotto, M. Valente, L. Trentin, G. Semenzato. 2001. CXCR3 and its ligand CXCL10 are expressed by inflammatory cells infiltrating lung allografts and mediate chemotaxis of T cells at sites of rejection. Am. J. Pathol. 158: 1703

Grimm, M. C., W. F. Doe. 1996. Chemokines in inflammatory bowel disease mucosa: expression of RANTES, macrophage inflammatory protein (MIP)-1α, MIP-1β, and γ-interferon-inducible protein-10 by macrophages, lymphocytes, endothelial cells, and granulomas. Inflamm. Bowel Dis. 2: 88

Lahrtz, F., L. Piali, D. Nadal, H.-W. Pfister, K.-S. Spanaus, M. Baggiolini, A. Fontana. 1997. Chemokines in viral meningitis: chemotactic cerebrospinal fluid factors include MCP-1 and IP-10 for monocytes and activate T lymphocytes. Eur. J. Immunol. 27: 2484

Agostini, C., M. Cassatella, R. Sancetta, R. Zambello, L. Trentin, S. Gasperini, A. Perin, F. Piazza, M. Siviero, M. Facco, et al 1998. Involvement of the IP-10 chemokine in sarcoid granulomatous reactions. J. Immunol. 161: 6413

Narumi, S., Y. Tominaga, M. Tamaru, S. Shimai, H. Okumura, K. Nishioji, Y. Itoh, T. Okanoue. 1997. Expression of IFN-inducible protein-10 in chronic hepatitis. J. Immunol. 158: 5536

Loetscher, M., B. Gerber, P. Loetscher, S. A. Jones, L. Piali, I. Clark-Lewi, M. Baggiolini, B. Moser. 1996. Chemokine receptor specific for IP10 and Mig: structure, function, and expression in activated T-lymphocytes. J. Exp. Med. 184: 963

Loetscher, P., M. Uguccioni, L. Bordoli, M. Baggiolini, B. Moser, C. Chizzolini, J.-M. Dayer. 1998. CCR5 is characteristic of Th1 lymphocytes. Nature 391: 344

Qin, S., J. B. Rottman, P. Myrers, N. Kassam, M. Weinblatt, M. Loetscher, A. E. Koch, B. Moser, C. R. Mackay. 1998. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest. 101: 746

Butcher, E., L. Picker. 1996. Lymphocyte homing and homeostasis. Science 1996 272: 60

Cella, M., D. Jarrossay, F. Facchetti, O. Alebardi, H. Nakajima, A. Lanzavecchia, M. Colonna. 1999. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5: 919

Garcia-Lopez, M. A., F. Sanchez-Madrid, J. M. Rodriguez-Frade, M. Mellado, A. Acevedo, M. I. Garcia, J. P. Albar, C. Martinez, M. Marazuela. 2001. CXCR3 chemokine receptor distribution in normal and inflamed tissues: expression on activated lymphocytes, endothelial cells, and dendritic cells. Lab. Invest. 81: 409

Trentin, L., C. Agostini, M. Facco, F. Piazza, A. Perin, M. Siviero, C. Gurrieri, S. Galvan, F. Adami, R. Zambello, et al 1999. The chemokine receptor CXCR3 is expressed on malignant B cells and mediates chemotaxis. J. Clin. Invest. 104: 115

Jones, D., R. J. Benjamin, A. Shahsafaei, D. M. Dorfman. 2000. The chemokine receptor CXCR3 is expressed in a subset of B-cell lymphomas and is a marker of B-cell chronic lymphocytic leukemia. Blood 95: 627

Jinquan, T., C. Jing, H. H. Jacobi, C. M. Reimert, A. Millner, S. Quan, J. B. Hansen, S. Dissing, H. J. Malling, P. S. Skov, et al 2000. CXCR3 expression and activation of eosinophils: role of IFN-γ-inducible protein-10 and monokine induced by IFN-γ. J. Immunol. 165: 1548

Romagnani, P., F. Annunziato, L. Lasagni, E. Lazzeri, C. Beltrame, M. Francalanci, M. Uguccioni, G. Galli, L. Cosmi, L. Maurenzig, et al 2001. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J. Clin. Invest. 107: 53

Salcedo, R., J. H. Resau, D. Halverson, E. A. Hudson, M. Dambach, D. Powell, K. Wasserman, J. J. Oppenheim. 2000. Differential expression and responsiveness of chemokine receptors (CXCR1–3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB J. 14: 2055

Romagnani, P., F. Annunziato, E. Lazzeri, L. Cosmi, C. Beltrame, L. Lasagni, G. Galli, M. Francalanci, R. Manetti, F. Marra, et al 2001. Interferon-inducible protein 10, monokine induced by interferon γ, and interferon-inducible T-cell α chemoattractant are produced by thymic epithelial cells and attract T-cell receptor (TCR) αβ+CD8+ single-positive T cells, TCRγδ+ T cells, and natural killer-type cells in human thymus. Blood 97: 601

Jinquan, T., S. Quan, H. H. Jacobi, C. Jing, A. Millner, B. Jensen, H. O. Madsen, L. P. Ryder, A. Svejgaard, H. J. Malling, et al 2000. CXC chemokine receptor 3 expression on CD34+ hematopoietic progenitors from human cord blood induced by granulocyte-macrophage colony-stimulating factor: chemotaxis and adhesion induced by its ligands, interferon γ-inducible protein 10 and monokine induced by interferon γ. Blood 96: 1230

Farber, J. M.. 1993. HuMig: a new human member of the chemokine family of cytokines. Biochim. Biophys. Acta 192: 223

Cole, K. E., C. A. Strick, T. J. Paradis, K. T. Ogborne, M. Loetscher, R. P. Gladue, W. Lin, J. G. Boyd, B. Moser, D. E. Wood, et al 1998. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med. 187: 2009

Widney, D. P., Y. R. Xia, A. J. Lusis, J. B. Smith. 2000. The murine chemokine CXCL11 (IFN-inducible T cell α chemoattractant) is an IFN-γ- and lipopolysaccharide-inducible glucocorticoid-attenuated response gene expressed in lung and other tissues during endotoxemia. J. Immunol. 164: 6322

Khan, I., J. A. MacLean, F. Lee, L. Casciotti, E. DeHaan, J. Schwartzman, A. D. Luster. 2000. The IP-10 chemokine is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity 12: 483

Amichay, D., R. T. Gazzinelli, G. Karupiah, T. R. Moench, A. Sher, J. M. Farber. 1996. Genes for chemokines MuMig and Crg-2 are induced in protozoan and viral infections in response to IFN-γ with patterns of tissue expression that suggest nonredundant roles in vivo. J. Immunol. 157: 4511

Goebeler, M., A. Toksoy, U. Spandau, E. Engelhardt, E. B. Brocker, R. Gillitzer. 1998. The CXC chemokine Mig is highly expressed in the papillae of psoriatic lesions. J. Pathol. 184: 89

Fife, B. T., K. J. Kennedy, M. C. Paniagua, N. W. Lukacs, S. L. Kunkel, A. D. Luster, W. J. Karpus. 2001. CXCL10 (IFN-γ-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 166: 7617

Liu, M. T., B. P. Chen, P. Oertel, M. J. Buchmeier, D. Armstrong, T. A. Hamilton, T. E. Lane. 2000. The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J. Immunol. 165: 2327

Liu, M. T., H. S. Keirstead, T. E. Lane. 2001. Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J. Immunol. 167: 4091

Koga, S., M. B. Auerbach, T. M. Engeman, A. C. Novick, H. Toma, R. L. Fairchild. 1999. T cell infiltration into class II MHC-disparate allografts and acute rejection is dependent on the IFN-γ-induced chemokine Mig. J. Immunol. 163: 4878

Hancock, W. W., W. Gao, V. Csizmadia, K. Faia, N. Shemmeri, A. D. Luster. 2001. Donor-derived IP-10 initiates development of acute allograft rejection. J. Exp. Med. 193: 975

Gangur, V., F. E. R. Simons, K. T. Hayglass. 1998. Human IP-10 selectively promotes dominance of polyclonally activated and environmental antigen-driven IFNγ over IL-4 responses. FASEB J. 12: 705

Pertl, U., A. D. Luster, N. M. Varki, D. Homann, G. Gaedicke, R. A. Reisfeld, H. N. Lode. 2001. IFN-γ-inducible protein-10 is essential for the generation of a protective tumor-specific CD8 T cell response induced by single-chain IL-12 gene therapy. J. Immunol. 166: 6944

Ohmori, Y., T. A. Hamilton. 1993. Cooperative interaction between interferon (IFN) stimulus response element and κB sequence motifs controls IFNγ- and lipopolysaccharide-stimulated transcription from the murine IP-10 promoter. J. Biol. Chem. 268: 6677

Luster, A. D., S. Greenberg, P. Leder. 1995. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J. Exp. Med. 182: 219

Lane, T. E., M. T. Liu, B. P. Chen, V. C. Asensio, R. M. Samawi, A. D. Paoletti, I. L. Campbell, S. L. Kunkel, H. S. Fox, M. J. Buchmeier. 2000. A central role for CD4+ T cells and RANTES in virus-induced central nervous system inflammation and demyelination. J. Virol. 74: 1415

Wu, G. F., A. A. Dandekar, L. Pewe, S. Perlman. 2000. CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J. Immunol. 165: 2278

Castro, R. F., S. Perlman. 1995. CD8+ T-cell epitopes within the surface glycoprotein of a neurotropic coronavirus and correlation with pathogenicity. J. Virol. 69: 8127

Bergmann, C. C., Q. Yao, M. Lin, S. A. Stohlman. 1996. The JHM strain of mouse hepatitis virus induces a spike protein-specific Db-restricted cytotoxic T cell response. J. Gen. Virol. 77: 315

Coffman, R. L., D. A. Lebman, P. Rothman. 1993. Mechanism and regulation of immunoglobulin isotype switching. Adv. Immunol. 54: 229

Gautam, S., J. Battisto, J. A. Major, D. Armstrong, M. Stoler, T. A. Hamilton. 1994. Chemokine expression in trinitrochlorobenzene-mediated contact hypersensitivity. J. Leukocyte Biol. 55: 452

Gocinski, B. L., R. E. Tigelaar. 1990. Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. J. Immunol. 144: 4121

Lu, B., C. Ebensperger, Z. Dembic, Y. Wang, M. Kvatyuk, T. Lu, R. L. Coffman, S. Pestka, P. B. Rothman. 1998. Targeted disruption of the interferon-γ receptor 2 gene results in severe immune defects in mice. Proc. Natl. Acad. Sci. USA 95: 8233

Abe, M., T. Kondo, H. Xu, R. L. Fairchild. 1996. Interferon-γ inducible protein (IP-10) expression is mediated by CD8+ T cells and is regulated by CD4+ T cells during the elicitation of contact hypersensitivity. J. Invest. Dermatol. 107: 360

Yuan, Y. S., J. A. Major, J. R. Battisto. 1996. Regulation of chemokine gene expression by contact hypersensitivity and by oral tolerance. Ann. NY Acad. Sci. 778: 434

Parra, B., D. R. Hinton, N. W. Marten, C. C. Bergmann, M. T. Lin, C. S. Yang, S. A. Stohlman. 1999. IFN-γ is required for viral clearance from central nervous system oligodendroglia. J. Immunol. 162: 1641

Farber, J. M.. 1997. Mig and IP-10: CXC chemokines that target lymphocytes. J. Leukocyte Biol. 61: 246

Hancock, W. W., B. Lu, W. Gao, V. Csizmadia, K. Faia, J. A. King, S. T. Smiley, M. Ling, N. P. Gerard, C. G. Gerard. 2000. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J. Exp. Med. 192: 1515

Cyster, J. G.. 1999. Chemokines and cell migration in secondary lymphoid organs. Science 286: 2098

Gu, L., S. Tseng, R. M. Horner, C. Tam, M. Loda, B. J. Rollins. 2000. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404: 407

Peters, W., H. M. Scott, H. F. Chambers, J. L. Flynn, I. F. Charo, J. D. Ernst. 2001. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 98: 7958

Sato, N., S. K. Ahuja, M. Quinones, V. Kostecki, R. L. Reddick, P. C. Melby, W. A. Kuziel, S. S. Ahuja. 2000. CC chemokine receptor (CCR)2 is required for Langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells: absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, β cell outgrowth, and sustained neutrophilic inflammation. J. Exp. Med. 192: 205

Penna, G., S. Sozzani, L. Adorini. 2001. Cutting edge: selective usage of chemokine receptors by plasmacytoid dendritic cells. J. Immunol. 167: 1862

Patterson, S.. 2000. Flexibility and cooperation among dendritic cells. Nat. Immunol. 1: 273

Nagasawa, T., S. Hirota, K. Tachibana, N. Takakura, S. Nishikawa, Y. Kitamura, N. Yoshida, H. Kikutani, T. Kishimoto. 1996. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382: 635

Nagasawa, T., H. Kikutani, T. Kishimoto. 1994. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl. Acad. Sci. USA 91: 2305

Egawa, T., K. Kawabata, H. Kawamoto, K. Amada, R. Okamoto, N. Fujii, T. Kishimoto, Y. Katsura, T. Nagasawa. 2001. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity 15: 323

Nanki, T., P. E. Lipsky. 2000. Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J. Immunol. 164: 5010

Ebert, L. M., S. R. McColl. 2001. Coregulation of CXC chemokine receptor and CD4 expression on T lymphocytes during allogeneic activation. J. Immunol. 166: 4870

Bonacchi, A., P. Romagnani, R. G. Romanelli, E. Efsen, F. Annunziato, L. Lasagni, M. Francalanci, M. Serio, G. Laffi, M. Pinzani, et al 2001. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J. Biol. Chem. 276: 9945