IFA-EO: Thuật toán đom đóm cải tiến kết hợp với tối ưu hóa cực trị cho các bài toán tối ưu hóa liên tục không ràng buộc

Soft Computing - Tập 27 - Trang 2943-2964 - 2022
Min-Rong Chen1, Liu-Qing Yang2,1, Guo-Qiang Zeng3,4, Kang-Di Lu5, Yi-Yuan Huang1
1School of Computer Science, South China Normal University, Guangzhou, China
2School of Information Technology & Engineering, Guangzhou College of Commerce, Guangzhou, China
3National-Local Joint Engineering Laboratory of Digitalize Electrical Design Technology, Wenzhou University, Wenzhou, China
4College of Cyber Security, Jinan University, Guangzhou, China
5Institute of Cyber Systems and Control, Zhejiang University, Hangzhou, China

Tóm tắt

Là một trong những thuật toán tiến hóa, thuật toán đom đóm (FA) đã được sử dụng rộng rãi để giải quyết nhiều vấn đề tối ưu hóa phức tạp khác nhau. Tuy nhiên, FA có những nhược điểm đáng kể về tốc độ hội tụ chậm và dễ bị mắc kẹt vào cực trị địa phương. Để khắc phục những thiếu sót này, bài báo này đề xuất một thuật toán FA cải tiến kết hợp với tối ưu hóa cực trị (EO), được gọi là IFA-EO, trong đó có ba chiến lược được kết hợp. Đầu tiên, để cân bằng sự đánh đổi giữa khả năng khám phá và khả năng khai thác, chúng tôi áp dụng một mô hình thu hút mới cho hoạt động của FA, kết hợp giữa mô hình thu hút hoàn chỉnh và mô hình thu hút đơn lẻ thông qua chiến lược lựa chọn xác suất. Trong mô hình thu hút đơn lẻ, xác suất nhỏ chấp nhận giải pháp kém hơn để cải thiện sự đa dạng của con cái. Thứ hai, kích thước bước thích nghi được đề xuất dựa trên số lần lặp lại để điều chỉnh động mức độ chú ý đến mô hình khám phá hoặc mô hình khai thác. Cuối cùng, chúng tôi kết hợp một thuật toán EO có khả năng tìm kiếm địa phương mạnh mẽ vào FA. Thí nghiệm được tiến hành trên hai nhóm benchmark phổ biến bao gồm các hàm unimodal và multimodal phức tạp. Kết quả thí nghiệm của chúng tôi cho thấy thuật toán IFA-EO được đề xuất có thể xử lý các vấn đề tối ưu hóa phức tạp khác nhau và có hiệu suất tương tự hoặc tốt hơn so với tám biến thể FA khác, ba thuật toán dựa trên EO và một biến thể tiến hóa vi phân tiên tiến về độ chính xác và kết quả thống kê.

Từ khóa

#thuật toán đom đóm #tối ưu hóa cực trị #tối ưu hóa phức tạp #thuật toán tiến hóa #cải tiến thuật toán

Tài liệu tham khảo

Alcalá-Fdez J, Sanchez L, Garcia S, del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC (2009) KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3):307–318 Alweshah M, Abdullah S (2015) Hybridizing firefly algorithms with a probabilistic neural network for solving classification problems. Appl Soft Comput 35:513–524 Baykasoğlu A, Gölcük İ, Özsoydan FB (2019) Improving fuzzy c-means clustering via quantum-enhanced weighted superposition attraction algorithm. Hacet J Math Stat 48(3):859–882 Beni G, Wang J (1993) Swarm intelligence in cellular robotic systems, Robots and biological systems: towards a new bionics? Springer, Berlin, Heidelberg, pp 703–712 Bhushan B, Pillai SS (2013) “Particle swarm optimization and firefly algorithm: performance analysis,” In: IEEE International Advance Computing Conference (IACC). IEEE, pp. 746–751 Biswas PP, Suganthan PN, Wu G, Amaratunga GAJ (2019) Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renew Energy 132:425–438 Boettcher S, Percus AG (1999) “Extremal optimization: methods derived from co-evolution,” In:Proceedings of the Genetic and Evolutionary Computation Conference, pp.825–832 Boettcher S, Percus AG (2000) Nature’s way of optimizing. Artif Intell 119:275–286 Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, NewYork Chen T, He J, Sun G, Chen G, Yao X (2009) “A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems”,. IEEE Trans Syst, Man, and Cybern B (cybernetics) 39(5):1092–1106 Chen MR, Li X, Zhang X, Lu YZ (2010) A novel particle swarm optimizer hybridized with extremal optimization. Appl Soft Comput 10(2):367–373 Chen MR, Chen JH, Zeng GQ, Lu KD, Jiang XF (2019) An improved artificial bee colony algorithm combined with extremal optimization and Boltzmann Selection probability. Swarm Evol Comput 49:158–177 Chen MR, Lu YZ, Yang GK (2006) Population-based extremal optimization with adaptive Lévy mutation for constrained optimization, In: Proceedings of 2006 International Conference on Computational Intelligence and Security (CIS’06), pp. 258–261 Deb K, Pratap A, Agarwal S (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197 Derrac J, García S, Molina D, Herrers F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18 Fister I, Yang XS, Brest J, Fister I (2013) Jr, “Modified firefly algorithm using quaternion representation.” Expert Syst Appl 40(18):7220–7230 Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98 Gölcük İ, Ozsoydan FB (2020) Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains. Knowl-Based Syst 194:105586 Ho SY, Shu LS, Chen JH (2004) Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Trans Evol Comput 8(6):522–541 Horng MH (2012) Vector quantization using the firefly algorithm for image compression. Expert Syst Appl 39(1):1078–1091 Jian H, Chen X, Wu D (2018) A switch-mode firefly algorithm for global optimization. IEEE Access 6:54177–54184 Fister Jr I, Yang XS, Fister I, Brest J, (2012) “Memetic firefly algorithm for combinatorial optimization,” arXiv preprint arXiv:1204.5165 Kazem A, Sharifi E, Hussain FK, Saberi M, Hussain OK (2013) Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl Soft Comput 13(2):947–958 Kennedy J (2010) Particle swarm optimization. Encycl Mach Learn. 760:766 Li LM, Lu KD, Zeng GQ, Wu L, Chen MR (2016) A novel real-coded population-based extremal optimization algorithm with polynomial mutation: a non-parametric statistical study on continuous optimization problems. Neurocomputing 174:577–587 Lu KD, Zhou WN, Zeng GQ, Zheng YY (2019) Constrained population extremal optimization-based robust load frequency control of multi-area interconnected power system. Int J Electr Power Energy Syst 105:249–271 Lv SX, Zeng YR, Wang L (2018) An effective fruit fly optimization algorithm with hybrid information exchange and its applications. Int J Mach Learn Cybern 9(10):1623–1648 Olamaei J, Moradi M, Kaboodi T (2013) “A new adaptive modified firefly algorithm to solve optimal capacitor placement problem,” In: Proceedings of the 2013 18th Conference on Electrical Power Distribution Networks (EPDC), pp. 1–6 Ozsoydan FB (2019a) Effects of dominant wolves in grey wolf optimization algorithm. Appl Soft Comput 83:105658 Ozsoydan FB (2019b) Artificial search agents with cognitive intelligence for binary optimization problems. Comput Ind Eng 136:18–30 Ozsoydan FB, Baykasoglu A (2019) Analysing the effects of various switching probability characteristics in flower pollination algorithm for solving unconstrained function minimization problems. Neural Comput Appl 31(11):7805–7819 Ozsoydan FB, Baykasoğlu A (2019) Quantum firefly swarms for multimodal dynamic optimization problems. Expert Syst Appl 115:189–199 Ozsoydan FB, Gölcük İ (2021) Cuckoo search algorithm with various walks. Applications of Cuckoo Search Algorithm and its Variants. Springer, Singapore, pp 47–77 Ozsoydan FB, Baykasoglu A (2015) “A multi-population firefly algorithm for dynamic optimization problems.” In: IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS). IEEE, 1–7 Pan X, Xue L, Li R (2018) A new and efficient firefly algorithm for numerical optimization problems. Neural Comput Appl 31:1–9 Patle BK, Pandey A, Jagadeesh A, Parhi DR (2018) Path planning in uncertain environment by using firefly algorithm. Def Technol 14(6):691–701 Storn R, Price K (1997) Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359 Tang PH, Tseng MH (2013) Adaptive directed mutation for real-coded genetic algorithms. Appl Soft Comput 13:600–614 Trunfio GA (2014) Enhancing the firefly algorithm through a cooperative coevolutionary approach: an empirical study on benchmark optimisation problems. Int J Bio-Inspir Comput 6(2):108–125 Wang H, Wang W, Sun H, Rahanmayan S (2016) Firefly algorithm with random attraction. Int J Bio-Inspir Comput 8(1):33–41 Wang H, Zhou X, Sun H, Yu X, Zhao J, Cui L (2017a) Firefly algorithm with adaptive control parameters. Soft Comput 21(17):5091–5102 Wang H, Wang W, Zhou X, Sun H, Zhao J, Yu X, Cui Z (2017b) Firefly algorithm with neighborhood attraction. Inf Sci 382:374–387 Wang H, Wang W, Cui Z, Zhou X, Zhao J, Li Y (2018) A new dynamic firefly algorithm for demand estimation of water resources. Inf Sci 438:95–106 Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1:67–82 Wu J, Wang YG, Burrage K, Tian YC, Lawson B, Ding Z (2020) An improved firefly algorithm for global continuous optimization problems. Exp Syst Appl 149:113340 Yang XS (2010a) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization, Berlin, Heidelberg, pp 65–74 Yang XS, “Nature-inspired metaheuristic algorithms,” Luniver press, 2010b. Yu S, Su S, Lu Q, Huang L (2014) A novel wise step strategy for firefly algorithm. Int J Comput Math 91(12):2507–2513 Yu S, Zhu S, Ma Y, Mao D (2015) A variable step size firefly algorithm for numerical optimization. Appl Math Comput 263:214–220 Zeng GQ, Chen J, Dai YX, Li LM, Zheng CW, Chen MR (2015) Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160:173–184 Zeng GQ, Xie XQ, Chen MR, Weng J (2019) Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems. Swarm Evol Comput 44:320–334 Zhao C, Wu C, Chai J, Wang X, Yang X, Lee J, Kim MJ (2017) Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty. Appl Soft Comput 55:549–564