ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Brown, 2000, Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project: data, methods, and results, Thermochim. Acta, 355, 125, 10.1016/S0040-6031(00)00443-3
Sestak, 1984
Sestak, 2005
Vyazovkin, 2008, The Handbook of Thermal Analysis & Calorimetry, vol. 5, 503
Burnham, 2007, A historical and current perspective on predicting thermal cookoff behavior, J. Therm. Anal. Calorim., 89, 407, 10.1007/s10973-006-8161-6
Vyazovkin, 2000, Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective, Int. Rev. Phys. Chem., 19, 45, 10.1080/014423500229855
Vyazovkin, 2000, On the phenomenon of variable activation energy for condensed phase reactions, New J. Chem., 24, 913, 10.1039/b004279j
Atkins, 2010
Brown, 2001
Sestak, 1971, Study of the kinetics of the mechanism of solid-state reactions at increased temperature, Thermochim. Acta, 3, 1, 10.1016/0040-6031(71)85051-7
Burnham, 1987, Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic equations, Energy Fuels, 1, 452, 10.1021/ef00006a001
Roduit, 2008, Evaluating SADT by advanced kinetics-based simulation approach, J. Therm. Anal. Calorim., 93, 153, 10.1007/s10973-007-8865-2
Sbirrazzuoli, 2007, Is the Friedman method applicable to transformations with temperature dependent reaction heat?, Macromol. Chem. Phys., 208, 1592, 10.1002/macp.200700100
Starink, 2007, Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral, J. Mater. Sci., 42, 483, 10.1007/s10853-006-1067-7
Vyazovkin, 2006, Isoconversional kinetic analysis of thermally stimulated processes in polymers, Macromol. Rapid Commun., 27, 1515, 10.1002/marc.200600404
Friedman, 1964, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci., Part C, 6, 183, 10.1002/polc.5070060121
Starink, 2003, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods, Thermochim. Acta, 404, 163, 10.1016/S0040-6031(03)00144-8
Doyle, 1962, Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci., 6, 639, 10.1002/app.1962.070062406
Ozawa, 1965, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Japan, 38, 1881, 10.1246/bcsj.38.1881
Flynn, 1966, General treatment of the thermogravimetry of polymers, J. Res. Nat. Bur. Standards, Part A, 70, 487, 10.6028/jres.070A.043
Akahira, 1971, Method of determining activation deterioration constant of electrical insulating materials, Res. Report Chiba Inst. Technol. (Sci. Technol.), 16, 22
Flynn, 1983, The isoconversional method for determination of energy of activation at constant heating rates, J. Therm. Anal., 27, 95, 10.1007/BF01907325
Sbirrazzuoli, 1997, Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3—Peak maximum evolution methods and isoconversional methods, Thermochim. Acta, 293, 25, 10.1016/S0040-6031(97)00023-3
Vyazovkin, 1996, Linear and nonlinear procedures in isoconversional computations of the activation energy of thermally induced reactions in solids, J. Chem. Inf. Comp. Sci., 36, 42, 10.1021/ci950062m
Vyazovkin, 1997, Evaluation of the activation energy of thermally stimulated solid-state reactions under an arbitrary variation of the temperature, J. Comput. Chem., 18, 393, 10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P
Vyazovkin, 2001, Modification of the integral isoconversional method to account for variation in the activation energy, J. Comput. Chem., 22, 178, 10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
Budrugeac, 2002, Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions, J. Therm. Anal. Calorim., 68, 131, 10.1023/A:1014932903582
Vyazovkin, 2007, Thermal denaturation of collagen analyzed by isoconversional method, Macromol. Biosci., 7, 1181, 10.1002/mabi.200700162
Chen, 2009, Temperature dependence of sol–gel conversion kinetics in gelatin–water system, Macromol. Biosci., 9, 383, 10.1002/mabi.200800214
Dranca, 2009, Thermal stability of gelatin gels: effect of preparation conditions on the activation energy barrier to melting, Polymer, 50, 4859, 10.1016/j.polymer.2009.06.070
Vyazovkin, 2006, Isoconversional analysis of combined melt and glass crystallization data, Macromol. Chem. Phys., 207, 20, 10.1002/macp.200500419
Alzina, 2010, Hybrid nanocomposites: advanced nonlinear method for calculating key kinetic parameters of complex cure kinetics, J. Phys. Chem. B, 114, 12480, 10.1021/jp1040629
Kissinger, 1957, Reaction kinetics in differential thermal analysis, Anal. Chem., 29, 1702, 10.1021/ac60131a045
Chen, 1993, A generalized form of the Kissinger equation, Thermochim. Acta, 215, 109, 10.1016/0040-6031(93)80085-O
Braun, 1987, Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models, Energy Fuels, 1, 153, 10.1021/ef00002a003
Criado, 1986, Non-isothermal transformation kinetics: remarks on the Kissinger method, J. Non-Cryst. Solids, 87, 302, 10.1016/S0022-3093(86)80004-7
Criado, 1987, Non-isothermal crystallization kinetics of metal glasses: simultaneous determination of both the activation energy and the exponent n of the JMA kinetic law, Acta Metall., 35, 1715, 10.1016/0001-6160(87)90117-9
Budrugeac, 2007, Applicability of the Kissinger equation in thermal analysis: revisited, J. Therm. Anal. Calorim., 88, 703, 10.1007/s10973-006-8087-z
Farjas, 2010, A simple kinetic method for the determination of the reaction model from non-isothermal experiments, J. Therm. Anal. Calorim., 102, 615, 10.1007/s10973-010-0737-5
Sanchez-Jimenez, 2008, Kissinger kinetic analysis of data obtained under different heating schedules, J. Therm. Anal. Calorim., 94, 427, 10.1007/s10973-008-9200-2
Vyazovkin, 2002, Is the Kissinger equation applicable to the processes that occur on cooling?, Macromol. Rapid Commun., 23, 771, 10.1002/1521-3927(20020901)23:13<771::AID-MARC771>3.0.CO;2-G
Burnham, 2000, Application of the Sestak–Berggren equation to organic and inorganic materials of practical interest, J. Therm. Anal. Calorim., 60, 895, 10.1023/A:1010163809501
Braun, 1991, Pyrolysis kinetics for lacustrine and marine source rocks by programmed micropyrolysis, Energy Fuel, 5, 192, 10.1021/ef00025a033
Takhor, 1971, 166
Mahadevan, 1986, Calorimetric measurements on As–Sb–Se glasses, J. Non-Cryst. Solids, 88, 11, 10.1016/S0022-3093(86)80084-9
Starink, 2007, Comments on “Precipitation kinetics of Al–1.12Mg2Si–0.35Si and Al–1.07Mg2Si–0.33Cu alloys”, J. Alloys Compd., 433, L4, 10.1016/j.jallcom.2006.06.069
Lesnikovich, 1983, A method of finding invariant values of kinetic parameters, J. Therm. Anal., 27, 89, 10.1007/BF01907324
Madhysudanan, 1993, New equations for kinetic analysis of non-isothermal reactions, Thermochim. Acta, 221, 13, 10.1016/0040-6031(93)80519-G
Tang, 2003, New approximate formula for Arrhenius temperature integral, Thermochim. Acta, 408, 39, 10.1016/S0040-6031(03)00310-1
Budrugeac, 2004, On the evaluation of the nonisothermal kinetic parameters of (GeS2)(0.3)(Sb2S3)(0.7) crystallization using the IKP method, Int. J. Chem. Kinet., 36, 309, 10.1002/kin.10176
Budrugeac, 2007, The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters, J. Therm. Anal. Calorim., 89, 143, 10.1007/s10973-006-7514-5
Vyazovkin, 1996, A unified approach to kinetic processing of nonisothermal data, Int. J. Chem. Kinet., 28, 95, 10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-G
Malek, 1992, The kinetic-analysis of nonisothermal data, Thermochim. Acta, 200, 257, 10.1016/0040-6031(92)85118-F
Malek, 1995, The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses, Thermochim. Acta, 267, 61, 10.1016/0040-6031(95)02466-2
Criado, 1989, Applicability of the master plots in kinetic-analysis of non-isothermal data, Thermochim. Acta, 147, 377, 10.1016/0040-6031(89)85192-5
Vyazovkin, 1999, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochim. Acta, 340–341, 53, 10.1016/S0040-6031(99)00253-1
Perez-Maqueda, 2002, Advantages of combined kinetic analysis of experimental data obtained under any heating profile, J. Phys. Chem. A, 106, 2862, 10.1021/jp012246b
Perez-Maqueda, 2006, Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism, J. Phys. Chem. A, 110, 12456, 10.1021/jp064792g
Freund, 2006
Opfermann, 2000, Kinetic analysis using multivariate non-linear regression I. Basic concepts, J. Therm. Anal. Calorim., 60, 641, 10.1023/A:1010167626551
Burnham, 2005, An nth-order Gaussian energy distribution model for sintering, Chem. Eng. J., 108, 47, 10.1016/j.cej.2004.12.037
2007, vol. 14.02
2005, vol. 14.02