ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data

Thermochimica Acta - Tập 520 Số 1-2 - Trang 1-19 - 2011
Sergey Vyazovkin1, Alan K. Burnham2, J. M. Criado3, Luis A. Pérez‐Maqueda3, C. Popescu4, Nicolas Sbirrazzuoli5
1Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, AL 35294, USA
2American Shale Oil, LLC, 4221 Findlay Way, Livermore, CA 94550, USA
3Instituto de Ciencia de Materiales de Sevilla, C.S.I.C., Universidad de Sevilla, C. Américo Vespucio n°49, 41092 Sevilla, Spain
4DWI an der RWTH Aachen e.V., Pauwelsstr. 8, 52056, Germany
5Thermokinetic and Advanced Eco-friendly Materials Group, Laboratory of Chemistry of Organic and Metallic Materials C.M.O.M., EA 3155, University of Nice – Sophia Antipolis, 06108 Nice Cedex 2, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Brown, 2000, Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project: data, methods, and results, Thermochim. Acta, 355, 125, 10.1016/S0040-6031(00)00443-3

Sestak, 1984

Sestak, 2005

Vyazovkin, 2008, The Handbook of Thermal Analysis & Calorimetry, vol. 5, 503

Burnham, 2007, A historical and current perspective on predicting thermal cookoff behavior, J. Therm. Anal. Calorim., 89, 407, 10.1007/s10973-006-8161-6

Vyazovkin, 2000, Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective, Int. Rev. Phys. Chem., 19, 45, 10.1080/014423500229855

Vyazovkin, 2000, On the phenomenon of variable activation energy for condensed phase reactions, New J. Chem., 24, 913, 10.1039/b004279j

Atkins, 2010

Brown, 2001

Sestak, 1971, Study of the kinetics of the mechanism of solid-state reactions at increased temperature, Thermochim. Acta, 3, 1, 10.1016/0040-6031(71)85051-7

Burnham, 1987, Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic equations, Energy Fuels, 1, 452, 10.1021/ef00006a001

Roduit, 2008, Evaluating SADT by advanced kinetics-based simulation approach, J. Therm. Anal. Calorim., 93, 153, 10.1007/s10973-007-8865-2

Sbirrazzuoli, 2007, Is the Friedman method applicable to transformations with temperature dependent reaction heat?, Macromol. Chem. Phys., 208, 1592, 10.1002/macp.200700100

Starink, 2007, Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral, J. Mater. Sci., 42, 483, 10.1007/s10853-006-1067-7

Vyazovkin, 2006, Isoconversional kinetic analysis of thermally stimulated processes in polymers, Macromol. Rapid Commun., 27, 1515, 10.1002/marc.200600404

Friedman, 1964, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci., Part C, 6, 183, 10.1002/polc.5070060121

Starink, 2003, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods, Thermochim. Acta, 404, 163, 10.1016/S0040-6031(03)00144-8

Doyle, 1962, Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci., 6, 639, 10.1002/app.1962.070062406

Ozawa, 1965, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Japan, 38, 1881, 10.1246/bcsj.38.1881

Flynn, 1966, General treatment of the thermogravimetry of polymers, J. Res. Nat. Bur. Standards, Part A, 70, 487, 10.6028/jres.070A.043

Akahira, 1971, Method of determining activation deterioration constant of electrical insulating materials, Res. Report Chiba Inst. Technol. (Sci. Technol.), 16, 22

Flynn, 1983, The isoconversional method for determination of energy of activation at constant heating rates, J. Therm. Anal., 27, 95, 10.1007/BF01907325

Sbirrazzuoli, 1997, Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3—Peak maximum evolution methods and isoconversional methods, Thermochim. Acta, 293, 25, 10.1016/S0040-6031(97)00023-3

Vyazovkin, 1996, Linear and nonlinear procedures in isoconversional computations of the activation energy of thermally induced reactions in solids, J. Chem. Inf. Comp. Sci., 36, 42, 10.1021/ci950062m

Vyazovkin, 1997, Evaluation of the activation energy of thermally stimulated solid-state reactions under an arbitrary variation of the temperature, J. Comput. Chem., 18, 393, 10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P

Vyazovkin, 2001, Modification of the integral isoconversional method to account for variation in the activation energy, J. Comput. Chem., 22, 178, 10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#

Budrugeac, 2002, Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions, J. Therm. Anal. Calorim., 68, 131, 10.1023/A:1014932903582

Vyazovkin, 2007, Thermal denaturation of collagen analyzed by isoconversional method, Macromol. Biosci., 7, 1181, 10.1002/mabi.200700162

Chen, 2009, Temperature dependence of sol–gel conversion kinetics in gelatin–water system, Macromol. Biosci., 9, 383, 10.1002/mabi.200800214

Dranca, 2009, Thermal stability of gelatin gels: effect of preparation conditions on the activation energy barrier to melting, Polymer, 50, 4859, 10.1016/j.polymer.2009.06.070

Chen, 2009, Isoconversional kinetics of glass aging, J. Phys. Chem. B, 113, 4631, 10.1021/jp811412q

Vyazovkin, 2006, Isoconversional analysis of combined melt and glass crystallization data, Macromol. Chem. Phys., 207, 20, 10.1002/macp.200500419

Alzina, 2010, Hybrid nanocomposites: advanced nonlinear method for calculating key kinetic parameters of complex cure kinetics, J. Phys. Chem. B, 114, 12480, 10.1021/jp1040629

Kissinger, 1957, Reaction kinetics in differential thermal analysis, Anal. Chem., 29, 1702, 10.1021/ac60131a045

Chen, 1993, A generalized form of the Kissinger equation, Thermochim. Acta, 215, 109, 10.1016/0040-6031(93)80085-O

Braun, 1987, Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models, Energy Fuels, 1, 153, 10.1021/ef00002a003

Criado, 1986, Non-isothermal transformation kinetics: remarks on the Kissinger method, J. Non-Cryst. Solids, 87, 302, 10.1016/S0022-3093(86)80004-7

Criado, 1987, Non-isothermal crystallization kinetics of metal glasses: simultaneous determination of both the activation energy and the exponent n of the JMA kinetic law, Acta Metall., 35, 1715, 10.1016/0001-6160(87)90117-9

Budrugeac, 2007, Applicability of the Kissinger equation in thermal analysis: revisited, J. Therm. Anal. Calorim., 88, 703, 10.1007/s10973-006-8087-z

Farjas, 2010, A simple kinetic method for the determination of the reaction model from non-isothermal experiments, J. Therm. Anal. Calorim., 102, 615, 10.1007/s10973-010-0737-5

Sanchez-Jimenez, 2008, Kissinger kinetic analysis of data obtained under different heating schedules, J. Therm. Anal. Calorim., 94, 427, 10.1007/s10973-008-9200-2

Vyazovkin, 2002, Is the Kissinger equation applicable to the processes that occur on cooling?, Macromol. Rapid Commun., 23, 771, 10.1002/1521-3927(20020901)23:13<771::AID-MARC771>3.0.CO;2-G

Burnham, 2000, Application of the Sestak–Berggren equation to organic and inorganic materials of practical interest, J. Therm. Anal. Calorim., 60, 895, 10.1023/A:1010163809501

Braun, 1991, Pyrolysis kinetics for lacustrine and marine source rocks by programmed micropyrolysis, Energy Fuel, 5, 192, 10.1021/ef00025a033

Takhor, 1971, 166

Mahadevan, 1986, Calorimetric measurements on As–Sb–Se glasses, J. Non-Cryst. Solids, 88, 11, 10.1016/S0022-3093(86)80084-9

Starink, 2007, Comments on “Precipitation kinetics of Al–1.12Mg2Si–0.35Si and Al–1.07Mg2Si–0.33Cu alloys”, J. Alloys Compd., 433, L4, 10.1016/j.jallcom.2006.06.069

Lesnikovich, 1983, A method of finding invariant values of kinetic parameters, J. Therm. Anal., 27, 89, 10.1007/BF01907324

Madhysudanan, 1993, New equations for kinetic analysis of non-isothermal reactions, Thermochim. Acta, 221, 13, 10.1016/0040-6031(93)80519-G

Tang, 2003, New approximate formula for Arrhenius temperature integral, Thermochim. Acta, 408, 39, 10.1016/S0040-6031(03)00310-1

Budrugeac, 2004, On the evaluation of the nonisothermal kinetic parameters of (GeS2)(0.3)(Sb2S3)(0.7) crystallization using the IKP method, Int. J. Chem. Kinet., 36, 309, 10.1002/kin.10176

Budrugeac, 2007, The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters, J. Therm. Anal. Calorim., 89, 143, 10.1007/s10973-006-7514-5

Vyazovkin, 1996, A unified approach to kinetic processing of nonisothermal data, Int. J. Chem. Kinet., 28, 95, 10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-G

Malek, 1992, The kinetic-analysis of nonisothermal data, Thermochim. Acta, 200, 257, 10.1016/0040-6031(92)85118-F

Malek, 1995, The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses, Thermochim. Acta, 267, 61, 10.1016/0040-6031(95)02466-2

Criado, 1989, Applicability of the master plots in kinetic-analysis of non-isothermal data, Thermochim. Acta, 147, 377, 10.1016/0040-6031(89)85192-5

Vyazovkin, 1999, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochim. Acta, 340–341, 53, 10.1016/S0040-6031(99)00253-1

Perez-Maqueda, 2002, Advantages of combined kinetic analysis of experimental data obtained under any heating profile, J. Phys. Chem. A, 106, 2862, 10.1021/jp012246b

Perez-Maqueda, 2006, Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism, J. Phys. Chem. A, 110, 12456, 10.1021/jp064792g

Freund, 2006

Opfermann, 2000, Kinetic analysis using multivariate non-linear regression I. Basic concepts, J. Therm. Anal. Calorim., 60, 641, 10.1023/A:1010167626551

Burnham, 2005, An nth-order Gaussian energy distribution model for sintering, Chem. Eng. J., 108, 47, 10.1016/j.cej.2004.12.037

Burnham, 1999, Global kinetic analysis of complex materials, Energy Fuels, 13, 1, 10.1021/ef9800765

2007, vol. 14.02

2005, vol. 14.02