Hysteresis and irreversibility of global extreme precipitation to anthropogenic CO2 emission
Tài liệu tham khảo
Alexander, 2006, Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res., 111, 10.1029/2005JD006290
An, 2021, Global cooling hiatus driven by an AMOC overshoot in a carbon dioxide removal scenario, Earth's Future, 9, 10.1029/2021EF002165
An, 2021, Rate‐dependent hysteresis of the atlantic meridional overturning circulation system and its asymmetric loop, Geophys. Res. Lett., 48, 10.1029/2020GL090132
An, 2022, General circulation and global heat transport in a quadrupling CO2 pulse experiment, Sci. Rep., 12, 10.1038/s41598-022-15905-0
Armstrong McKay, 2022, Exceeding 1.5°C global warming could trigger multiple climate tipping points, Science, 377, 10.1126/science.abn7950
Ayugi, 2022, East African population exposure to precipitation extremes under 1.5 °C and 2.0 °C warming levels based on CMIP6 models, Environ. Res. Lett., 17, 10.1088/1748-9326/ac5d9d
Boucher, 2012, Reversibility in an Earth System model in response to CO 2 concentration changes, Environ. Res. Lett., 7, 10.1088/1748-9326/7/2/024013
Cai, 2019, The social cost of carbon with economic and climate risks, J. Polit. Econ., 127, 2684, 10.1086/701890
Caldeira, 2013, Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration, Environ. Res. Lett., 8, 10.1088/1748-9326/8/3/034039
Cao, 2011, Why is there a short-term increase in global precipitation in response to diminished CO 2 forcing?, Geophys. Res. Lett., 38, 10.1029/2011GL046713
Carleton, 2016, Social and economic impacts of climate, Science, 353, 10.1126/science.aad9837
Ceola, 2014, Satellite nighttime lights reveal increasing human exposure to floods worldwide, Geophys. Res. Lett., 41, 7184, 10.1002/2014GL061859
Chadwick, 2013, Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments, Clim. Dynam., 40, 295, 10.1007/s00382-012-1287-2
Chen, 2021, Significant increase of the global population exposure to increased precipitation extremes in the future, Earth's Future, 9, 10.1029/2020EF001941
Chen, 2020, Increased population exposure to precipitation extremes under future warmer climates, Environ. Res. Lett., 15, 10.1088/1748-9326/ab751f
Donat, 2016, More extreme precipitation in the world's dry and wet regions, Nat. Clim. Change, 6, 508, 10.1038/nclimate2941
2012
Fischer, 2013, Simulated and projected climate extremes in the Zhujiang River Basin, South China, using the regional climate model COSMO-CLM, Int. J. Climatol., 33, 2988, 10.1002/joc.3643
Gao, 2020
Garbe, 2020, The hysteresis of the antarctic ice sheet, Nature, 585, 538, 10.1038/s41586-020-2727-5
Hawkins, 2011, Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport, Geophys. Res. Lett., 38, 10.1029/2011GL047208
Hunke, 2010, 76pp
Hurrell, 2013, The community earth system model: a framework for collaborative research, Bull. Am. Meteorol. Soc., 94, 1339, 10.1175/BAMS-D-12-00121.1
2013, 1535
2018, Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways
2021, Summary for policymakers
Jo, 2022, Hysteresis behaviors in East Asian extreme precipitation frequency to CO 2 pathway, Geophys. Res. Lett., 49, 10.1029/2022GL099814
Jones, 2015, Future population exposure to US heat extremes, Nat. Clim. Change, 5, 652, 10.1038/nclimate2631
Keller, 2018, The carbon dioxide removal model intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6, Geosci. Model Dev. (GMD), 11, 1133, 10.5194/gmd-11-1133-2018
Kim, 2022, Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing, Nat. Clim. Change, 12, 834, 10.1038/s41558-022-01452-z
Kug, 2022, Hysteresis of the intertropical convergence zone to CO2 forcing, Nat. Clim. Change, 12, 47, 10.1038/s41558-021-01211-6
Lawrence, 2011, Parameterization improvements and functional and structural advances in version 4 of the community land model, J. Adv. Model. Earth Syst., 3, 10.1029/2011MS000045
Liu, 2020, Global socioeconomic risk of precipitation extremes under climate change, Earth's Future, 8, 10.1029/2019EF001331
Lu, 2010, Quantifying contributions to polar warming amplification in an idealized coupled general circulation model, Clim. Dynam., 34, 669, 10.1007/s00382-009-0673-x
MacDougall, 2013, Reversing climate warming by artificial atmospheric carbon-dioxide removal: can a Holocene-like climate be restored?, Geophys. Res. Lett., 40, 5480, 10.1002/2013GL057467
Mertz, 2009, Adaptation to climate change in developing countries, Environ. Manag., 43, 743, 10.1007/s00267-008-9259-3
Mondal, 2021, Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis, Sci. Total Environ., 771, 10.1016/j.scitotenv.2021.145186
Mondal, 2022, Projected urban exposure to extreme precipitation over South Asia, Sci. Total Environ., 822, 10.1016/j.scitotenv.2022.153664
Neale, 2010, Description of the NCAR Community Atmosphere Model (CAM 5.0), Tech. Note NCAR/TN- 486+STR, Natl. Cent. for Atmos.
Oh, 2022, Contrasting hysteresis behaviors of northern Hemisphere land monsoon precipitation to CO 2 pathways, Earth's Future, 10, 10.1029/2021EF002623
Ohba, 2014, Statistical parameterization expressing ENSO variability and reversibility in response to CO2 concentration changes, J. Clim., 27, 398, 10.1175/JCLI-D-13-00279.1
O'Neill, 2014, A new scenario framework for climate change research: the concept of shared socioeconomic pathways, Clim. Change, 122, 387, 10.1007/s10584-013-0905-2
Paik, 2020, Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation, Geophys. Res. Lett., 47, 10.1029/2019GL086875
Peng, 2020, Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 °C less global warming, Clim. Dynam., 54, 543, 10.1007/s00382-019-05014-6
Pinskwar, 2019, Observed changes in extreme precipitation in Poland: 1991-2015 versus 1961-1990, Theor. Appl. Climatol., 135, 773, 10.1007/s00704-018-2372-1
Pollard, 2005, Hysteresis in cenozoic antarctic ice-sheet variations, Global Planet. Change, 45, 9, 10.1016/j.gloplacha.2004.09.011
Rahmstorf, 2005, Thermohaline circulation hysteresis: a model intercomparison, Geophys. Res. Lett., 32, 10.1029/2005GL023655
Shen, 2022, Changes in population exposure to extreme precipitation in the Yangtze River Delta, China, Climate Services, 27, 10.1016/j.cliser.2022.100317
Shi, 2021, Impacts and socioeconomic exposures of global extreme precipitation events in 1.5 and 2.0 °C warmer climates, Sci. Total Environ., 766, 10.1016/j.scitotenv.2020.142665
Skific, 2009, Attribution of projected changes in atmospheric moisture transport in the arctic: a self-organizing map perspective, J. Clim., 22, 4135, 10.1175/2009JCLI2645.1
Smith, 2010, 1
Song, 2022, Asymmetrical response of summer rainfall in East Asia to CO2 forcing, Sci. Bull., 67, 213, 10.1016/j.scib.2021.08.013
Trenberth, 2007, Observations: surface and atmospheric climate change
Trenberth, 2011, Changes in precipitation with climate change, Clim. Res., 47, 123, 10.3354/cr00953
2017
Westra, 2013, Global increasing trends in annual maximum daily precipitation, J. Clim., 26, 3904, 10.1175/JCLI-D-12-00502.1
Wu, 2010, Temporary acceleration of the hydrological cycle in response to a CO 2 rampdown, Geophys. Res. Lett., 37, 10.1029/2010GL043730
Yeh, 2021, Contrasting response of hydrological cycle over land and ocean to a changing CO2 pathway, NPJ Climate Atmosphere Sci., 4, 53, 10.1038/s41612-021-00206-6
Zhan, 2019, Observed exposure of population and gross domestic product to extreme precipitation events in the poyang lake basin, China, Atmosphere, 10, 817, 10.3390/atmos10120817
Zhang, 2019, Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions, J. Clim., 32, 8465, 10.1175/JCLI-D-18-0662.1
Zhang, 2020, Increasing impacts from extreme precipitation on population over China with global warming, Sci. Bull., 65, 243, 10.1016/j.scib.2019.12.002
Zhang, 2018, Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions, Nat. Commun., 9, 3153, 10.1038/s41467-018-05633-3
Zhao, 2021, Population exposure to precipitation extremes in the Indus River Basin at 1.5 °C, 2.0 °C and 3.0 °C warming levels, Adv. Clim. Change Res., 12, 199, 10.1016/j.accre.2021.03.005
Zickfeld, 2016, On the proportionality between global temperature change and cumulative CO 2 emissions during periods of net negative CO 2 emissions, Environ. Res. Lett., 11, 10.1088/1748-9326/11/5/055006