Hypoxia inhibition of camptothecin-induced apoptosis by Bax loss

Biologia - Tập 67 - Trang 616-621 - 2012
Kyoungsook Park1,2,3, Abdela Salah Woubit1, Cesar D. Fermin1, Gopal Reddy1, Tsegaye Habtemariam1, Jin Woong Chung4, Minseo Park5, Dai-Wu Seol6,7, Moonil Kim1,2,3
1Department of Pathobiology, College of Veterinary Medicine Nursing & Allied Health (CVMNAH), Tuskegee University, Tuskegee, USA
2BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
3School of Engineering, University of Science and Technology (UST), Daejeon, Korea
4Department of Biology and Biomedical Science, Dong-A University, Busan, Korea
5Department of Physics, Auburn University, Auburn, USA
6Faculty of Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Korea
7Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, USA

Tóm tắt

Tumor cell hypoxia is linked to the resistance of human solid tumors to the various anti-cancer therapies: thus, its exploitation has been considered to be a potential target for cancer treatment. Previously, we demonstrated for the first time that hypoxia inhibits apoptosis induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) through blocking translocation of Bax, a pro-apoptotic protein, from the cytosol to the mitochondria. Nevertheless, the molecular mechanism coupling hypoxia to resistance for drugs, especially for anti-cancer chemotherapeutics, still remains to be elucidated. Here, we demonstrate that hypoxia attenuates camptothecin (CPT)-induced apoptosis by decreasing the protein levels of Bax, thereby leading to resistance to the drug. DNA damage after exposure to CPT resulted in an increase of p53, and a concomitant up-regulation of p21, regardless of oxygen content. Under normoxic condition, CPT induced expression of p53 and its down-stream target molecule Bax as well, in the presence of increased p21. In contrast, when preexposed to hypoxia, Bax-inducing activity of CPT was completely lost and the Bax level was even decreased, although CPT increased both p53 and p21 as observed under normoxic condition. Our data indicate that hypoxia attenuates apoptosis via Bax. Our data also suggest that hypoxia regulates tumor cell apoptosis differentially, through regulating Bax translocation or through down-regulating Bax levels, depending on death-inducing signals as shown by TRAIL- or CPT-induced apoptosis.

Tài liệu tham khảo

Agrawal S.G., Liu F.T., Wiseman C., Shirali S., Liu H., Lillington D., Du M.Q., Syndercombe-Court D., Newland A.C., Gribben J.G. & Jia L. 2008. Increased proteasomal degradation of Bax is a common feature of poor prognosis chronic lymphocytic leukemia. Blood 111: 2790–2796. Brown J.M. 2000. Hypoxic cytotoxic agents: a new approach to cancer chemotherapy. Drug Resist. Updat. 3: 7–13. Bunz F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J.P., Sedivy J.M. Kinzler, K.W. & Vogelstein B. 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501. Bunz F., Hwang P.M., Torrance C., Waldman T., Zhang Y., Dillehay L., Williams J., Lengauer C., Kinzler K.W. & Vogelstein B. 1999. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104: 263–269. Chi J.T., Wang Z., Nuyten D.S., Rodriguez E.H., Schaner M.E., Salim A., Wang Y., Kristensen G.B., Helland A., Borresen-Dale A.L., Giaccia A., Longaker M.T., Hastie T., Yang G.P., van de Vijver M.J. & Brown P.O. 2006. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3: e47. Chipuk J.E., Kuwana T., Bouchier-Hayes L., Droin N.M., Newmeyer D.D., Schuler M. & Green D.R. 2004. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303: 1010–1014. Cuisnier O., Serduc R., Lavieille J.P., Longuet M., Reyt E. & Riva C. 2003. Chronic hypoxia protects against gammairradiation-induced apoptosis by inducing bcl-2 up-regulation and inhibiting mitochondrial translocation and conformational change of bax protein. Int. J. Oncol. 23: 1033–1041. Deng Y., Lin Y. & Wu X. 2002. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 16: 33–45. Dong Z., Venkatachalam M.A., Wang J., Patel Y., Saikumar P., Semenza G.L., Force T. & Nishiyama J. 2001. Up-regulation of apoptosis inhibitory protein IAP-2 by hypoxia. Hif-1-independent mechanisms. J. Biol. Chem. 276: 18702–18709. Graeber T.G., Osmanian C., Jacks T., Housman D.E., Koch C.J., Lowe S.W. & Giaccia A.J. 1996. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88–91. Hamada H., Tashima Y., Kisaka Y., Iwamoto K., Hanai T., Eguchi Y. & Okamoto M. 2009. Sophisticated framework between cell cycle arrest and apoptosis induction based on p53 dynamics. PLoS One 4: e4795. Han S.H., Kim M., Park K., Kim T.H. & Seol D.W. 2008. Blockade of processing/activation of caspase-3 by hypoxia. Biochem. Biophys. Res. Commun. 375: 684–688. Harris A.L. 2002. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer 2: 38–47. Hockenbery D.M., Oltvai Z.N., Yin X.M., Milliman C.L. & Korsmeyer S.J. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251. Kim M., Park S.Y., Pai H.S., Kim T.H., Billiar T.R. & Seol D.W. 2004. Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking Bax translocation. Cancer Res. 64: 4078–4081. Kohli M., Yu J., Seaman C., Bardelli A., Kinzler K.W., Vogelstein B., Lengauer C. & Zhang L. 2004. SMAC/Diablo-dependent apoptosis induced by nonsteroidal antiinflammatory drugs (NSAIDs) in colon cancer cells. Proc. Natl. Acad. Sci. USA 101: 16897–16902. Kumar D. & Jugdutt B.I. 2003. Apoptosis and oxidants in the heart. J. Lab. Clin. Med. 142: 288–297. LeBlanc H., Lawrence D., Varfolomeev E., Totpal K., Morlan J., Schow P., Fong S., Schwall R., Sinicropi D. & Ashkenazi A. 2002. Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat. Med. 8: 274–281. Li B. & Dou Q.P. 2000. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc. Natl. Acad. Sci. USA 97: 3850–3855. Liu L.F., Duann P., Lin C.T., D’Arpa P. & Wu J. 1996. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci. 803: 44–49. McCurrach M.E., Connor T.M., Knudson C.M., Korsmeyer S.J. & Lowe S.W. 1997. Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 94: 2345–2349. Nagaraj N.S., Vigneswaran N. & Zacharias W. 2007. Hypoxia inhibits TRAIL-induced tumor cell apoptosis: involvement of lysosomal cathepsins. Apoptosis 12: 125–139. Namiki A., Brogi E., Kearney M., Kim E.A., Wu T., Couffinhal T., Varticovski L. & Isner J.M. 1995. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J. Biol. Chem. 270: 31189–31195. Park S.Y., Billiar T.R. & Seol D.W. 2002. Hypoxia inhibition of apoptosis induced by tumor necrosis factor-related apoptosisinducing ligand (TRAIL). Biochem. Biophys. Res. Commun. 291: 150–153. Pommier Y. 2006. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6: 789–802. Pommier Y. 2009. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev. 109: 2894–2902. Ravi R. & Bedi A. 2002. Requirement of BAX for TRAIL/Apo2Linduced apoptosis of colorectal cancers: synergism with sulindac-mediated inhibition of Bcl-x(L). Cancer Res. 62: 1583–1587. Rustum Y.M. & Cao S. 1999. New drugs in therapy of colorectal cancer: preclinical studies. Semin. Oncol. 26: 612–620. Said H.M., Polat B., Hagemann C., Anacker J., Flentje M. & Vordermark D. 2009. Absence of GAPDH regulation in tumorcells of different origin under hypoxic conditions in-vitro. BMC Res. Notes 2: 8. Scorrano L. & Korsmeyer S.J. 2003. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun. 304: 437–444. Shannon A.M., Bouchier-Hayes D.J., Condron C.M. & Toomey D. 2003. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat. Rev. 29: 297–307. Teicher B.A. 1994. Hypoxia and drug resistance. Cancer Metastasis Rev. 13: 139–168. Theodorakis P., Lomonosova E. & Chinnadurai G. 2002. Critical requirement of BAX for manifestation of apoptosis induced by multiple stimuli in human epithelial cancer cells. Cancer Res. 62: 3373–3376. Trimmer E.E. & Essigmann J.M. 1999. Cisplatin. Essays Biochem. 34: 191–211. Vaupel P., Thews O. & Hoeckel M. 2001. Treatment resistance of solid tumors: role of hypoxia and anemia. Med. Oncol. 18: 243–259. Waldman T., Lengauer C., Kinzler K.W. & Vogelstein B. 1996. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716. Walsh S., Gill C., O’Neill A., Fitzpatrick J.M. & Watson R.W. 2009. Hypoxia increases normal prostate epithelial cell resistance to receptor-mediated apoptosis via AKT activation. Int. J. Cancer 124: 1871–1878. Zhang L., Yu J., Park B.H., Kinzler K.W. & Vogelstein B. 2000. Role of BAX in the apoptotic response to anticancer agents. Science 290: 989–992.