Hypoxia, gene expression, and metastasis

Cancer and Metastasis Reviews - Tập 26 Số 2 - Trang 333-339 - 2007
Denise A. Chan1, Amato J. Giaccia1
1Department of Radiation Oncology, Division of Cancer and Radiation Biology, Stanford University School of Medicine, CCSR-South, Room 1255, 269 Campus Drive, Stanford, CA, 94305-5152, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Brown, J. M., & Giaccia, A. J. (1998). The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Research, 58, 1408–1416.

Hockel, M., Schlenger, K., Knoop, C., & Vaupel, P. (1991). Oxygenation of carcinomas of the uterine cervix: Evaluation by computerized O2 tension measurements. Cancer Research, 51, 6098–6102.

Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.

Shweiki, D., Itin, A., Soffer, D., & Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359, 843–845.

Grunt, T. W., Lametschwandtner, A., & Staindl, O. (1985). The vascular pattern of basal cell tumors: Light microscopy and scanning electron microscopic study on vascular corrosion casts. Microvascular Research, 29, 371–386.

Dewhirst, M. W., Tso, C. Y., Oliver, R., Gustafson, C. S., Secomb, T. W., & Gross, J. F. (1989). Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. International Journal of Radiation Oncology, Biology, Physics, 17, 91–99.

Shah-Yukich, A. A., & Nelson, A. C. (1988). Characterization of solid tumor microvasculature: A three-dimensional analysis using the polymer casting technique. Laboratory Investigation, 58, 236–244.

Endrich, B., Reinhold, H. S., Gross, J. F., & Intaglietta, M. (1979). Tissue perfusion inhomogeneity during early tumor growth in rats. Journal of the National Cancer Institute, 62, 387–395.

Tannock, I. F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. British Journal of Cancer, 22, 258–273.

Kallman, R. F., & Dorie, M. J. (1986). Tumor oxygenation and reoxygenation during radiation therapy: Their importance in predicting tumor response. International Journal of Radiation Oncology, Biology, Physics, 12, 681–685.

Hall, E. J. (1994). Molecular biology in radiation therapy: The potential impact of recombinant technology on clinical practice. International Journal of Radiation Oncology, Biology, Physics, 30, 1019–1028.

Comerford, K. M., Wallace, T. J., Karhausen, J., Louis, N. A., Montalto, M. C., & Colgan, S. P. (2002). Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Research, 62, 3387–3394.

Wartenberg, M., Ling, F. C., Muschen, M., Klein, F., Acker, H., Gassmann, M., et al. (2003). Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB Journal, 17, 503–505.

Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., et al. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 379, 88–91.

Soengas, M. S., Alarcon, R. M., Yoshida, H., Giaccia, A. J., Hakem, R., Mak, T. W., et al. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science, 284, 156–159.

Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., et al. (1994). p53 status and the efficacy of cancer therapy in vivo. Science, 266, 807–810.

Bindra, R. S., & Glazer, P. M. (2005). Genetic instability and the tumor microenvironment: Towards the concept of microenvironment-induced mutagenesis. Mutation Research, 569, 75–85.

Bindra, R. S., & Glazer, P. M. (2007). Co-repression of mismatch repair gene expression by hypoxia in cancer cells: Role of the Myc/Max network. Cancer Letter (in press).

Huang, L. E., Bindra, R. S., Glazer, P. M., & Harris, A. L. (2007). Hypoxia-induced genetic instability-a calculated mechanism underlying tumor progression. Journal of Molecular Medicine, 85, 139–148.

Koshiji, M., To, K. K., Hammer, S., Kumamoto, K., Harris, A. L., Modrich, P., et al. (2005). HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Molecular Cell, 17, 793–803.

Hockel, M., Knoop, C., Schlenger, K., Vorndran, B., Baussmann, E., Mitze, M., et al. (1993). Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiotherapy and Oncology, 26, 45–50.

Brizel, D. M., Scully, S. P., Harrelson, J. M., Layfield, L. J., Bean, J. M., Prosnitz, L. R., et al. (1996). Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Research, 56, 941–943.

Hockel, M., Schlenger, K., Aral, B., Mitze, M., Schaffer, U., & Vaupel, P. (1996). Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Research, 56, 4509–4515.

Fyles, A. W., Milosevic, M., Wong, R., Kavanagh, M. C., Pintilie, M., Sun, A., et al. (1998). Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiotherapy and Oncology, 48, 149–156.

Nordsmark, M., Hoyer, M., Keller, J., Nielsen, O. S., Jensen, O. M., & Overgaard, J. (1996). The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. International Journal of Radiation Oncology, Biology, Physics, 35, 701–708.

Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., et al. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292, 464–468.

Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292, 468–472.

Yu, F., White, S. B., Zhao, Q., & Lee, F. S. (2001). HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proceedings of the National Academy of Sciences of the USA, 98, 9630–9635.

Huang, L. E., Gu, J., Schau, M., & Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the USA, 95, 7987–7992.

Masson, N., Willam, C., Maxwell, P. H., Pugh, C. W., & Ratcliffe, P. J. (2001). Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO Journal, 20, 5197–5206.

Chan, D. A., Sutphin, P. D., Denko, N. C., & Giaccia, A. J. (2002). Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. Journal of Biological Chemistry, 277, 40112–40117.

Chan, D. A., Sutphin, P. D., Yen, S. E., & Giaccia, A. J. (2005). Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Molecular and Cellular Biology, 25, 6415–6426.

Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107, 43–54.

Bruick, R. K., & McKnight, S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 294, 1337–1340.

Semenza, G. L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Development Biology, 15, 551–578.

Hickey, M. M., & Simon, M. C. (2006). Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Current Topics in Developmental Biology, 76, 217–257.

Brahimi-Horn, M. C., & Pouyssegur, J. (2007). Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochemical Pharmacology, 73, 450–457.

Denko, N. C., Fontana, L. A., Hudson, K. M., Sutphin, P. D., Raychaudhuri, S., Altman, R., et al. (2003). Investigating hypoxic tumor physiology through gene expression patterns. Oncogene, 22, 5907–5914.

Erler, J. T., Bennewith, K. L., Nicolau, M., Dornhofer, N., Kong, C., Le, Q. T., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440, 1222–1226.

Erler, J. T., & Giaccia, A. J. (2006). Lysyl oxidase mediates hypoxic control of metastasis. Cancer Research, 66, 10238–10241.

Higgins, D. F., Biju, M. P., Akai, Y., Wutz, A., Johnson, R. S., & Haase, V. H. (2004). Hypoxic induction of Ctgf is directly mediated by Hif-1. American Journal of Physiology. Renal Physiology, 287, F1223–F1232.

Wenger, C., Ellenrieder, V., Alber, B., Lacher, U., Menke, A., Hameister, H., et al. (1999). Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene, 18, 1073–1080.

Dornhofer, N., Spong, S., Bennewith, K., Salim, A., Klaus, S., Kambham, N., et al. (2006). Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Research, 66, 5816–5827.

Aikawa, T., Gunn, J., Spong, S. M., Klaus, S. J., & Korc, M. (2006). Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Molecular Cancer Therapeutic, 5, 1108–1116.

Krishnamachary, B., Zagzag, D., Nagasawa, H., Rainey, K., Okuyama, H., Baek, J. H., et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research, 66, 2725–2731.

Esteban, M. A., Tran, M. G., Harten, S. K., Hill, P., Castellanos, M. C., Chandra, A., et al. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Research, 66, 3567–3575.

Evans, A. J., Russell, R. C., Roche, O., Burry, T. N., Fish, J. E., Chow, V. W., et al. (2007). VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Molecular and Cellular Biology, 27, 157–169.

Wang, J., Loberg, R., & Taichman, R. S. (2006). The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Reviews, 25, 573–587.

Pore, N., & Maity, A. (2006). The Chemokine Receptor CXCR4: A Homing Device for Hypoxic Cancer Cells? Cancer Biology and Therapy, 5, 1563–1565.

Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.

Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E. J., & Krek, W. (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425, 307–311.

Cooper, C. R., Sikes, R. A., Nicholson, B. E., Sun, Y. X., Pienta, K. J., & Taichman, R. S. (2004). Cancer cells homing to bone: the significance of chemotaxis and cell adhesion. Cancer Treatment and Research, 118, 291–309.

Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., & McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Research, 62, 1832–1837.

Robledo, M. M., Bartolome, R. A., Longo, N., Rodriguez-Frade, J. M., Mellado, M., Longo, I., et al. (2001). Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. Journal of Biological Chemistry, 276, 45098–45105.

Scala, S., Ottaiano, A., Ascierto, P. A., Cavalli, M., Simeone, E., Giuliano, P., et al. (2005). Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clinical Cancer Research, 11, 1835–1841.

Longo-Imedio, M. I., Longo, N., Trevino, I., Lazaro, P., & Sanchez-Mateos, P. (2005). Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. International Journal of Cancer, 117, 861–865.

Scala, S., Giuliano, P., Ascierto, P. A., Ierano, C., Franco, R., Napolitano, M., et al. (2006). Human melanoma metastases express functional CXCR4. Clinical Cancer Research, 12, 2427–2433.

Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10, 858–864.

Welford, S. M., Bedogni, B., Gradin, K., Poellinger, L., Broome Powell, M., & Giaccia, A. J. (2006). HIF1alpha delays premature senescence through the activation of MIF. Genes & Development, 20, 3366–3371.

Lal, A., Peters, H., St Croix, B., Haroon, Z. A., Dewhirst, M. W., Strausberg, R. L., et al. (2001). Transcriptional response to hypoxia in human tumors. Journal of the National Cancer Institute, 93, 1337–1343.