Hypointense signal lesions of the articular cartilage: a review of current concepts

Clinical Imaging - Tập 38 - Trang 785-791 - 2014
B. Keegan Markhardt1, Eric Y. Chang2,3
1Department of Radiology, Community Division, University of Wisconsin, Madison, WI
2Department of Radiology, VA San Diego Healthcare System, San Diego, CA
3Department of Radiology, University of California, San Diego Medical Center, San Diego, CA

Tài liệu tham khảo

Neogi, 2009, Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study, Arthritis Rheum, 61, 1539, 10.1002/art.24824 Roemer, 2009, Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis, Ann Rheum Dis, 68, 1461, 10.1136/ard.2008.096834 Kijowski, 2009, Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint, Radiology, 250, 839, 10.1148/radiol.2503080822 Stephens, 2011, The cartilage black line sign: an unexpected MRI appearance of deep cartilage fissuring in three patients, Skelet Radiol, 40, 113, 10.1007/s00256-010-0994-1 Broderick, 1994, Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy, AJR Am J Roentgenol, 162, 99, 10.2214/ajr.162.1.8273700 Konig, 1987, Cartilage disorders: comparison of spin-echo, CHESS, and FLASH sequence MR images, Radiology, 164, 753, 10.1148/radiology.164.3.3615875 Wissman, 2012, The trochlear cleft: the "black line" of the trochlear trough, Skelet Radiol, 41, 1121, 10.1007/s00256-011-1356-3 Xia, 2000, Magic-angle effect in magnetic resonance imaging of articular cartilage: a review, Investig Radiol, 35, 602, 10.1097/00004424-200010000-00007 Brandt, 2003 Venn, 1977, Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition, Ann Rheum Dis, 36, 121, 10.1136/ard.36.2.121 Clark, 1991, Variation of collagen fiber alignment in a joint surface: a scanning electron microscope study of the tibial plateau in dog, rabbit, and man, J Orthop Res, 9, 246, 10.1002/jor.1100090213 Goodwin, 2004, Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance, AJR Am J Roentgenol, 182, 311, 10.2214/ajr.182.2.1820311 Jeffery, 1991, Three-dimensional collagen architecture in bovine articular cartilage, J Bone Joint Surg Br, 73, 795, 10.1302/0301-620X.73B5.1894669 ap Gwynn, 2000, Freeze-substitution of rabbit tibial articular cartilage reveals that radial zone collagen fibres are tubules, J Microsc, 197, 159, 10.1046/j.1365-2818.2000.00654.x Goodwin, 2000, In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy, AJR Am J Roentgenol, 174, 405, 10.2214/ajr.174.2.1740405 Fullerton, 1985, Orientation of tendons in the magnetic field and its effect on T2 relaxation times, Radiology, 155, 433, 10.1148/radiology.155.2.3983395 Henkelman, 1994, Anisotropy of NMR properties of tissues, Magn Reson Med, 32, 592, 10.1002/mrm.1910320508 Rubenstein, 1997, Laminar structures on MR images of articular cartilage, Radiology, 204, 15, 10.1148/radiology.204.1.9205216 Xia, 1998, Relaxation anisotropy in cartilage by NMR microscopy (muMRI) at 14-microm resolution, Magn Reson Med, 39, 941, 10.1002/mrm.1910390612 Dardzinski, 1997, Spatial variation of T2 in human articular cartilage, Radiology, 205, 546, 10.1148/radiology.205.2.9356643 Alhadlaq, 2004, The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy, Osteoarthritis Cartilage, 12, 887, 10.1016/j.joca.2004.07.006 Alhadlaq, 2005, Modifications of orientational dependence of microscopic magnetic resonance imaging T(2) anisotropy in compressed articular cartilage, J Magn Reson Imaging, 22, 665, 10.1002/jmri.20418 de Visser, 2008, Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging, Osteoarthritis Cartilage, 16, 83, 10.1016/j.joca.2007.05.013 Grunder, 2000, Visualization of pressure distribution within loaded joint cartilage by application of angle-sensitive NMR microscopy, Magn Reson Med, 43, 884, 10.1002/1522-2594(200006)43:6<884::AID-MRM15>3.0.CO;2-U Mosher, 2010, Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running, Osteoarthritis Cartilage, 18, 358, 10.1016/j.joca.2009.11.011 Dunham, 1990, Changes in the orientation of proteoglycans during the early development of natural murine osteoarthritis, J Orthop Res, 8, 101, 10.1002/jor.1100080113 Dunham, 1985, Altered orientation of glycosaminoglycans and cellular changes in the tibial cartilage in the first two weeks of experimental canine osteoarthritis, J Orthop Res, 3, 258, 10.1002/jor.1100030302 Wolff, 1989, Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo, Magn Reson Med, 10, 135, 10.1002/mrm.1910100113 Maroudas, 1976, Balance between swelling pressure and collagen tension in normal and degenerate cartilage, Nature, 260, 808, 10.1038/260808a0 Kim, 1993, Analysis of water-macromolecule proton magnetization transfer in articular cartilage, Magn Reson Med, 29, 211, 10.1002/mrm.1910290209 Seo, 1996, Hyaline cartilage: in vivo and in vitro assessment with magnetization transfer imaging, Radiology, 201, 525, 10.1148/radiology.201.2.8888253 Regatte, 2005, Depth-dependent proton magnetization transfer in articular cartilage, J Magn Reson Imaging, 22, 318, 10.1002/jmri.20377 Yao, 1996, Incidental magnetization transfer contrast in fast spin-echo imaging of cartilage, J Magn Reson Imaging, 6, 180, 10.1002/jmri.1880060132 Bruno, 2009 Mosher, 1999, Magnetic resonance imaging of superficial cartilage lesions: role of contrast in lesion detection, J Magn Reson Imaging, 10, 178, 10.1002/(SICI)1522-2586(199908)10:2<178::AID-JMRI11>3.0.CO;2-W Mosher, 2012 Maroudas, 1985, Studies of hydration and swelling pressure in normal and osteoarthritic cartilage, Biorheology, 22, 159, 10.3233/BIR-1985-22206 Borthakur, 2000, Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI, Osteoarthritis Cartilage, 8, 288, 10.1053/joca.1999.0303 Regatte, 2002, Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho, Acad Radiol, 9, 1388, 10.1016/S1076-6332(03)80666-9 Regatte, 1999, Sodium and proton MR properties of cartilage during compression, J Magn Reson Imaging, 10, 961, 10.1002/(SICI)1522-2586(199912)10:6<961::AID-JMRI8>3.0.CO;2-A Toffanin, 2001, Proteoglycan depletion and magnetic resonance parameters of articular cartilage, Arch Biochem Biophys, 390, 235, 10.1006/abbi.2001.2338 Mlynarik, 1999, The role of relaxation times in monitoring proteoglycan depletion in articular cartilage, J Magn Reson Imaging, 10, 497, 10.1002/(SICI)1522-2586(199910)10:4<497::AID-JMRI1>3.0.CO;2-T Nieminen, 2001, T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study, Magn Reson Med, 46, 487, 10.1002/mrm.1218 Watrin, 2001, T2 mapping of rat patellar cartilage, Radiology, 219, 395, 10.1148/radiology.219.2.r01ma32395 Yoshioka, 2004, Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis, Radiology, 231, 31, 10.1148/radiol.2311020453 Kijowski, 2006, Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint, Radiology, 238, 943, 10.1148/radiol.2382050122 Key, 1931, Experimental arthritis: the changes in joints produced by creating defects in the articular cartilage, J Bone Joint Surg Am, 13, 725 Alparslan, 2001, Postoperative magnetic resonance imaging of articular cartilage repair, Semin Musculoskelet Radiol, 5, 345, 10.1055/s-2001-19044 Brown, 2004, Magnetic resonance imaging appearance of cartilage repair in the knee, Clin Orthop Relat Res, 422, 214, 10.1097/01.blo.0000129162.36302.4f Mithoefer, 2005, The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study, J Bone Joint Surg Am, 87, 1911, 10.2106/JBJS.D.02846 Choi, 2008, MR imaging of cartilage repair in the knee and ankle, Radiographics, 28, 1043, 10.1148/rg.284075111