Hypertrophic Scarring and Keloids: Pathomechanisms and Current and Emerging Treatment Strategies

Molecular Medicine - Tập 17 Số 1-2 - Trang 113-125 - 2011
Gerd G. Gauglitz1, Hans Christian Körting1, T. Pavicic1, Thomas Ruzicka1, Marc G. Jeschke2
1Department of Dermatology and Allergology, Ludwig Maximilians University, Munich, Germany
2Shriners Hospitals for Children, Department of Surgery, University Texas Medical Branch, Galveston, Texas, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sund B. (2000) New Developments in Wound Care. PJB Publications, London, pp. 1–255.

Berman B, Bieley HC. (1995) Keloids. J. Am. Acad. Dermatol. 33:117–23.

Peacock EE Jr, Madden JW, Trier WC. (1970) Biologic basis for the treatment of keloids and hypertrophic scars. South. Med. J. 63:755–60.

Mancini RE, Quaife JV. (1962) Histogenesis of experimentally produced keloids. J. Invest. Dermatol. 38:143–81.

Atiyeh BS. (2007) Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods. Aesthetic. Plast. Surg. 31:468–94.

Slemp AE, Kirschner RE. (2006) Keloids and scars: a review of keloids and scars, their pathogenesis, risk factors, and management. Curr. Opin. Pediatr. 18:396–402.

Wheeland RG. (1996) Keloids and hypertrphic scars. In: Cutaneous Medicine and Surgery. Arndt KA, Robinson JK, Leboit PE, Wintroub BU (eds.). Saunders Elsevier, Philadelphia, pp. 900–5.

Alster TS, West TB. (1997) Treatment of scars: a review. Ann. Plast. Surg. 39:418–32.

Hawkins HK. (2007) Pathophysiology of the burn scar. In: Total Burn Care. Herndon DN (ed.) Saunders Elsevier, Philadelphia, pp. 608–19.

Murray JC. (1994) Keloids and hypertrophic scars. Clin. Dermatol. 12:27–37.

Al-Attar A, et al. (2006) Keloid pathogenesis and treatment. Plast. Reconstr. Surg. 117:286–300.

From L, Assad D. (1993) Neoplasms, pseudoneoplasms, and hyperplasia of supporting tissue origin. In: Dermatology in General Medicine. Jeffers JD, Englis MR (eds.). McGraw-Hill, New York, pp. 1198–99.

Muir IF. (1990) On the nature of keloid and hypertrophic scars. Br. J. Plast. Surg. 43:61–9.

Niessen FB, Spauwen PH, Schalkwijk J, Kon M. (1999) On the nature of hypertrophic scars and keloids: a review. Plast. Reconstr. Surg. 104:1435–58.

Leventhal D, Furr M, Reiter D. (2006) Treatment of keloids and hypertrophic scars: a meta-analysis and review of the literature. Arch. Facial. Plast. Surg. 8:362–8.

Sephel GC, Woodward SC. (2001) Repair, regeneration, and fibrosis. In: Rubin’s Pathology. Rubin E (ed.). Lippincott, Williams & Wilkins, Baltimore, pp. 84–117.

Oluwasanmi JO. (1974) Keloids in the African. Clin. Plast. Surg. 1:179–95.

Moustafa MF, Abdel-Fattah MA, Abdel-Fattah DC. (1975) Presumptive evidence of the effect of pregnancy estrogens on keloid growth: case report. Plast. Reconstr. Surg. 56:450–3.

Deitch EA, et al. (1983) Hypertrophic burn scars: analysis of variables. J. Trauma. 23:895–8.

Lewis WH, Sun KK. (1990) Hypertrophic scar: a genetic hypothesis. Burns. 16:176–8.

Murray CJ, Pinnel SR. (1992) Keloids and excessive dermal scarring. In: Woundhealing, Biochemical and Clinical Aspects. Cohen IK, Diegelmann RF, Lindblad WJ (eds.). Saunders Elsevier, Philadelphia, pp. 500–9.

Bayat A, et al. (2005) Keloid disease: clinical relevance of single versus multiple site scars. Br. J. Plast. Surg. 58:28–37.

Marneros AG, et al. (2004) Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J. Invest. Dermatol. 122:1126–32.

Brown JJ, Ollier WE, Thomson W, Bayat A. (2008) Positive association of HLA-DRB1*15 with keloid disease in Caucasians. Int. J. Immunogenet. 35:303–7.

Ford LC, King DF, Lagasse LD, Newcomer V. (1983) Increased androgen binding in keloids: a preliminary communication. J. Dermatol. Surg. Oncol. 9:545–7.

Schierle HP, Scholz D, Lemperle G. (1997) Elevated levels of testosterone receptors in keloid tissue: an experimental investigation. Plast. Reconstr. Surg. 100:390–6.

Placik OJ, Lewis VL Jr. (1992) Immunologic associations of keloids. Surg. Gynecol. Obstet. 175:185–93.

Smith CJ, Smith JC, Finn MC. (1987) The possible role of mast cells (allergy) in the production of keloid and hypertrophic scarring. J. Burn Care Rehabil. 8:126–31.

Ramakrishnan KM, Thomas KP, Sundararajan CR. (1974) Study of 1,000 patients with keloids in South India. Plast. Reconstr. Surg. 53:276–80.

Tredget EE, Nedelec B, Scott PG, Ghahary A. (1997) Hypertrophic scars, keloids, and contractures: the cellular and molecular basis for therapy. Surg. Clin. North Am. 77:701–30.

Brown JJ, Bayat A. (2009) Genetic susceptibility to raised dermal scarring. Br. J. Dermatol. 161:8–18.

Armour A, Scott PG, Tredget EE. (2007) Cellular and molecular pathology of HTS: basis for treatment. Wound Repair Regen. 15 Suppl 1:S6–17.

Wynn TA. (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 4:583–94.

Doucet C, et al. (1998) Interleukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J. Clin. Invest. 101:2129–39.

Kamp DW. (2003) Idiopathic pulmonary fibrosis: the inflammation hypothesis revisited. Chest. 124:1187–90.

Ladak A, Tredget EE. (2009) Pathophysiology and management of the burn scar. Clin. Plast. Surg. 36:661–74.

Butler PD, Longaker MT, Yang GP. (2008) Current progress in keloid research and treatment. J. Am. Coll. Surg. 206:731–41.

Ishihara H, et al. (2000) Keloid fibroblasts resist ceramide-induced apoptosis by overexpression of insulin-like growth factor I receptor. J. Invest. Dermatol. 115:1065–71.

Tuan TL, Nichter LS. (1998) The molecular basis of keloid and hypertrophic scar formation. Mol. Med. Today. 4:19–24.

Smith JC, et al. (2008) Gene profiling of keloid fibroblasts shows altered expression in multiple fibrosis-associated pathways. J. Invest. Dermatol. 128:1298–310.

Bullard KM, Longaker MT, Lorenz HP. (2003) Fetal wound healing: current biology. World J. Surg. 27:54–61.

Szulgit G, et al. (2002) Alterations in fibroblast alpha1beta1 integrin collagen receptor expression in keloids and hypertrophic scars. J. Invest. Dermatol. 118:409–15.

Kose O, Waseem A. (2008) Keloids and hypertrophic scars: are they two different sides of the same coin? Dermatol. Surg. 34:336–46.

Bock O, et al. (2005) Studies of transforming growth factors beta 1–3 and their receptors I and II in fibroblast of keloids and hypertrophic scars. Acta. Derm. Venereol. 85:216–20.

Schmid P, et al. (1998) Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar. Am. J. Pathol. 152:485–93.

Lee TY, et al. (1999) Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Ann. Plast. Surg. 43:179–84.

Xia W, et al. (2004) Complex epithelial-mesenchymal interactions modulate transforming growth factor-beta expression in keloid-derived cells. Wound Repair Regen. 12:546–56.

Lu L, et al. (2005) The temporal effects of anti-TGF-beta1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J. Am. Coll. Surg. 201:391–7.

Cordeiro MF, et al. (2003) Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome. Gene Ther. 10:59–71.

Shah M, Foreman DM, Ferguson MW. (1992) Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet. 339:213–4.

Shah M, Foreman DM, Ferguson MW. (1995) Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J. Cell. Sci. 108(Pt 3):985–1002.

Cutroneo KR. (2007) TGF-beta-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen. 15 Suppl 1: S54–60.

ten Dijke P, Hill CS. (2004) New insights into TGF-beta-Smad signalling. Trends Biochem. Sci. 29:265–73.

Kopp J, et al. (2005) Abrogation of transforming growth factor-beta signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J. Biol. Chem. 280:21570–6.

Wang Z, et al. (2007) Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts. J. Plast. Reconstr. Aesthet. Surg. 60:1193–9.

Nakao A, et al. (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 389:631–5.

Dooley S, et al. (2003) Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 125:178–91.

Chen MA, Davidson TM. (2005) Scar management: prevention and treatment strategies. Curr. Opin. Otolaryngol. Head Neck Surg. 13:242–7.

Terada Y, et al. (2002) Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney. Kidney Int. 61: S94–8.

Niessen FB, Schalkwijk J, Vos H, Timens W. (2004) Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells. J. Pathol. 202:121–9.

Andriessen MP, Niessen FB, Van de Kerkhof PC, Schalkwijk J. (1998) Hypertrophic scarring is associated with epidermal abnormalities: an immunohistochemical study. J. Pathol. 186:192–200.

Lim IJ, et al. (2001) Investigation of the influence of keloid-derived keratinocytes on fibroblast growth and proliferation in vitro. Plast. Reconstr. Surg. 107:797–808.

Eming SA, Krieg T, Davidson JM. (2007) Inflammation in wound repair: molecular and cellular mechanisms. J. Invest. Dermatol. 127:514–25.

Moyer KE, Saggers GC, Ehrlich HP. (2004) Mast cells promote fibroblast populated collagen lattice contraction through gap junction intercellular communication. Wound Repair. Regen. 12:269–75.

Noli C, Miolo A. (2001) The mast cell in wound healing. Vet. Dermatol. 12:303–13.

Ghahary A, Ghaffari A. (2007) Role of keratinocyte-fibroblast cross-talk in development of hyper-trophic scar. Wound Repair Regen. 15 Suppl 1: S46–53.

Ghahary A, et al. (1996) Collagenase production is lower in post-burn hypertrophic scar fibroblasts than in normal fibroblasts and is reduced by insulin-like growth factor-1. J. Invest. Dermatol. 106:476–81.

Birkedal-Hansen H, et al. (1993) Matrix metalloproteinases: a review. Crit. Rev. Oral. Biol. Med. 4:197–250.

Johnson-Wint B. (1988) Do keratinocytes regulate fibroblast collagenase activities during morphogenesis? Ann. N. Y. Acad. Sci. 548:167–73.

Fujiwara M, Muragaki Y, Ooshima A. (2005) Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration. Br. J. Dermatol. 153:295–300.

Neely AN, et al. (1999) Gelatinase activity in keloids and hypertrophic scars. Wound Repair Regen. 7:166–71.

Mauviel A. (1993) Cytokine regulation of metalloproteinase gene expression. J. Cell. Biochem. 53:288–95.

Zhang Y, McCluskey K, Fujii K, Wahl LM. (1998) Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte-macrophage CSF, and IL-1 beta through prostaglandin-dependent and -independent mechanisms. J. Immunol. 161:3071–6.

McQuibban GA, et al. (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood. 100:1160–7.

McQuibban GA, et al. (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science. 289:1202–6.

Scott PG, et al. (1996) Chemical characterization and quantification of proteoglycans in human post-burn hypertrophic and mature scars. Clin. Sci. (Lond). 90:417–25.

Sayani K, et al. (2000) Delayed appearance of decorin in healing burn scars. Histopathology. 36:262–72.

Zhang Z, et al. (2009) Recombinant human decorin inhibits TGF-beta1-induced contraction of collagen lattice by hypertrophic scar fibroblasts. Burns. 35:527–37.

Mukhopadhyay A, et al. (2010) Syndecan-2 and decorin: proteoglycans with a difference—implications in keloid pathogenesis. J. Trauma. 68:999–1008.

Nedelec B, et al. (2001) Myofibroblasts and apoptosis in human hypertrophic scars: the effect of interferon-alpha2b. Surgery. 130:798–808.

Bond JS, et al. (2008) Maturation of the human scar: an observational study. Plast. Reconstr. Surg. 121:1650–8.

Bond JS, et al. (2008) Scar redness in humans: how long does it persist after incisional and excisional wounding? Plast. Reconstr. Surg. 121:487–96.

Mustoe TA, et al. (2002) International clinical recommendations on scar management. Plast. Reconstr. Surg. 110:560–71.

Durani P, Bayat A. (2008) Levels of evidence for the treatment of keloid disease. J. Plast. Reconstr. Aesthet. Surg. 61:4–17.

Mutalik S. (2005) Treatment of keloids and hypertrophic scars. Indian J. Dermatol. Venereol. Leprol. 71:3–8.

Baur PS, et al. (1976) Ultrastructural analysis of pressure-treated human hypertrophic scars. J. Trauma. 16:958–67.

Macintyre L, Baird M. (2006) Pressure garments for use in the treatment of hypertrophic scars—a review of the problems associated with their use. Burns. 32:10–5.

Kelly AP. (2004) Medical and surgical therapies for keloids. Dermatol. Ther. 17:212–8.

Reno F, et al. (2003) In vitro mechanical compression induces apoptosis and regulates cytokines release in hypertrophic scars. Wound Repair Regen. 11:331–6.

Van den Kerckhove E, et al. (2005) The assessment of erythema and thickness on burn related scars during pressure garment therapy as a preventive measure for hypertrophic scarring. Burns. 31:696–702.

Sawada Y, Sone K. (1992) Hydration and occlusion treatment for hypertrophic scars and keloids. Br. J. Plast. Surg. 45:599–603.

Fulton JE, Jr. (1995) Silicone gel sheeting for the prevention and management of evolving hypertrophic and keloid scars. Dermatol. Surg. 21:947–51.

Reish RG, Eriksson E. (2008) Scar treatments: preclinical and clinical studies. J. Am. Coll. Surg. 206:719–30.

Phan TT, et al. (2003) Quercetin inhibits fibronectin production by keloid-derived fibroblasts. Implication for the treatment of excessive scars. J. Dermatol. Sci. 33:192–4.

Jackson BA, Shelton AJ. (1999) Pilot study evaluating topical onion extract as treatment for postsurgical scars. Dermatol. Surg. 25:267–9.

Chung VQ, Kelley L, Marra D, Jiang SB. (2006) Onion extract gel versus petrolatum emollient on new surgical scars: prospective double-blinded study. Dermatol. Surg. 32:193–7.

Beuth J, et al. (2006) Safety and efficacy of local administration of contractubex to hypertrophic scars in comparison to corticosteroid treatment. Results of a multicenter, comparative epidemiological cohort study in Germany. In Vivo. 20:277–83.

Ho WS, Ying SY, Chan PC, Chan HH. (2006) Use of onion extract, heparin, allantoin gel in prevention of scarring in Chinese patients having laser removal of tattoos: a prospective randomized controlled trial. Dermatol. Surg. 32:891–6.

Asilian A, Darougheh A, Shariati F. (2006) New combination of triamcinolone, 5-fluorouracil, and pulsed-dye laser for treatment of keloid and hypertrophic scars. Dermatol. Surg. 32:907–15.

Zurada JM, Kriegel D, Davis IC. (2006) Topical treatments for hypertrophic scars. J. Am. Acad. Dermatol. 55:1024–31.

Berman B, Kaufman J. (2002) Pilot study of the effect of postoperative imiquimod 5% cream on the recurrence rate of excised keloids. J. Am. Acad. Dermatol. 47:S209–11.

Berman B, et al. (2009) Treatment of keloid scars post-shave excision with imiquimod 5% cream: A prospective, double-blind, placebo-controlled pilot study. J. Drugs Dermatol. 8:455–8.

Prado A, Andrades P, Benitez S, Umana M. (2005) Scar management after breast surgery: preliminary results of a prospective, randomized, and double-blind clinical study with aldara cream 5% (imiquimod). Plast. Reconstr. Surg. 115:966–72.

Ferguson MW, et al. (2009) Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet. 373:1264–74.

Bush J, et al. (2010) Therapies with emerging evidence of efficacy: avotermin for the improvement of scarring. Dermatol Res Pract 2010:690613.

Jalali M, Bayat A. (2007) Current use of steroids in management of abnormal raised skin scars. Surgeon. 5:175–80.

Cruz NI, Korchin L. (1994) Inhibition of human keloid fibroblast growth by isotretinoin and triamcinolone acetonide in vitro. Ann. Plast. Surg. 33:401–5.

Boyadjiev C, Popchristova E, Mazgalova J. (1995) Histomorphologic changes in keloids treated with Kenacort. J. Trauma. 38:299–302.

Robles DT, Berg D. (2007) Abnormal wound healing: keloids. Clin. Dermatol. 25:26–32.

Lawrence WT. (1991) In search of the optimal treatment of keloids: report of a series and a review of the literature. Ann. Plast. Surg. 27:164–78.

Boutli-Kasapidou F, Tsakiri A, Anagnostou E, Mourellou O. (2005) Hypertrophic and keloidal scars: an approach to polytherapy. Int. J. Dermatol. 44:324–7.

Jaros E, Priborsky J, Klein L. (1999) Treatment of keloids and hypertrophic scars with cryotherapy [in Czech]. Acta Medica (Hradec Kralove). Suppl. 42:61–3.

Yosipovitch G, et al. (2001) A comparison of the combined effect of cryotherapy and corticosteroid injections versus corticosteroids and cryotherapy alone on keloids: a controlled study. J. Dermatolog. Treat. 12:87–90.

Sharpe D. (1997) Of apples and oranges, file drawers and garbage: why validity issues in meta-analysis will not go away. Clin. Psychol. Rev. 17:881–901.

Rusciani L, Rossi G, Bono R. (1993) Use of cryotherapy in the treatment of keloids. J. Dermatol. Surg. Oncol. 19:529–34.

Zouboulis CC, Blume U, Buttner P, Orfanos CE. (1993) Outcomes of cryosurgery in keloids and hypertrophic scars: a prospective consecutive trial of case series. Arch. Dermatol. 129:1146–51.

Har-Shai Y, Amar M, Sabo E. (2003) Intralesional cryotherapy for enhancing the involution of hypertrophic scars and keloids. Plast. Reconstr. Surg. 111:1841–52.

Poochareon VN, Berman B. (2003) New therapies for the management of keloids. J. Craniofac. Surg. 14:654–7.

Zuber TJ, DeWitt DE. (1994) Earlobe keloids. Am. Fam. Physician. 49:1835–41.

Guix B, et al. (2001) Treatment of keloids by high-dose-rate brachytherapy: a seven-year study. Int. J. Radiat. Oncol. Biol. Phys. 50:167–72.

Ogawa R, Mitsuhashi K, Hyakusoku H, Miyashita T. (2003) Postoperative electron-beam irradiation therapy for keloids and hyper-trophic scars: retrospective study of 147 cases followed for more than 18 months. Plast. Reconstr. Surg. 111:547–55.

Apfelberg DB, et al. (1984) Preliminary results of argon and carbon dioxide laser treatment of keloid scars. Lasers Surg. Med. 4:283–90.

Alster TS, Handrick C. (2000) Laser treatment of hypertrophic scars, keloids, and striae. Semin. Cutan. Med. Surg. 19:287–92.

Tanzi EL, Alster TS. (2004) Laser treatment of scars. Skin Therapy Lett. 9:4–7.

Alster T. (2003) Laser scar revision: comparison study of 585-nm pulsed dye laser with and without intralesional corticosteroids. Dermatol. Surg. 29:25–9.

Alster TS, Williams CM. (1995) Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet. 345:1198–200.

Dierickx C, Goldman MP, Fitzpatrick RE. (1995) Laser treatment of erythematous/hypertrophic and pigmented scars in 26 patients. Plast. Reconstr. Surg. 95:84–92.

Chan HH, et al. (2004) The use of pulsed dye laser for the prevention and treatment of hyper-trophic scars in Chinese persons. Dermatol. Surg. 30:987–94.

Fiskerstrand EJ, Svaasand LO, Volden G. (1998) Pigmentary changes after pulsed dye laser treatment in 125 northern European patients with port wine stains. Br. J. Dermatol. 138:477–9.

Hermanns JF, Petit L, Hermanns-Le T, Pierard GE. (2001) Analytic quantification of phototype-related regional skin complexion. Skin. Res. Technol. 7:168–71.

Jimenez SA, Freundlich B, Rosenbloom J. (1984) Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J. Clin. Invest. 74:1112–6.

Berman B, Duncan MR. (1989) Short-term keloid treatment in vivo with human interferon alfa-2b results in a selective and persistent normalization of keloidal fibroblast collagen, glycosaminoglycan, and collagenase production in vitro. J. Am. Acad. Dermatol. 21:694–702.

Tredget EE, et al. (1998) Transforming growth factor-beta in thermally injured patients with hyper-trophic scars: effects of interferon alpha-2b. Plast. Reconstr. Surg. 102:1317–28; discussion 1329–30.

Tredget EE, et al. (1998) Transforming growth factor-beta in thermally injured patients with hypertrophic scars: effects of interferon alpha-2b. Plast. Reconstr. Surg. 102:1317–30.

Espana A, Solano T, Quintanilla E. (2001) Bleomycin in the treatment of keloids and hypertrophic scars by multiple needle punctures. Dermatol. Surg. 27:23–7.

Bodokh I, Brun P. (1996) Treatment of keloid with intralesional bleomycin [in French]. Ann. Dermatol. Venereol. 123:791–4.

Naeini FF, Najafian J, Ahmadpour K. (2006) Bleomycin tattooing as a promising therapeutic modality in large keloids and hypertrophic scars. Dermatol. Surg. 32:1023–30.

Saray Y, Gulec AT. (2005) Treatment of keloids and hypertrophic scars with dermojet injections of bleomycin: a preliminary study. Int. J. Dermatol. 44:777–84.

Apikian M, Goodman G. (2004) Intralesional 5-fluorouracil in the treatment of keloid scars. Australas. J. Dermatol. 45:140–3.

Fitzpatrick RE. (1999) Treatment of inflamed hypertrophic scars using intralesional 5-FU. Dermatol. Surg. 25:224–32.

Nanda S, Reddy BS. (2004) Intralesional 5-fluorouracil as a treatment modality of keloids. Dermatol. Surg. 30:54–7.