Hypertension: Potential Player in Cardiovascular Disease Incidence in Preeclampsia
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cornelius, D. C., Cottrell, J., Amaral, L. M., & LaMarca, B. (2019). Inflammatory mediators: A causal link to hypertension during preeclampsia. British Journal of Pharmacology, 176(12), 1914–1921.
Omertayeva, D., Ponamaryova, O., Amirbekova, Z., Vazenmiller, D., & Mugazov, M. (2021). Diagnostic value of determining the level of purine metabolism intermediates in pregnant women with chronic hypertension and superimposed preeclampsia. Journal of Nephropathology, 10(3), 1–6.
Enkhmaa, D., Wall, D., Mehta, P. K., Stuart, J. J., Rich-Edwards, J. W., Merz, C. N. B., & Shufelt, C. (2016). Preeclampsia and vascular function: A window to future cardiovascular disease risk. Journal of Women’s Health, 25(3), 284–291.
Nawsherwan, A. K., Begum, N., Ahmed, Z., Mubarik, S., Ijaz, U. L. H., Ghulam, N., et al. (2020). Low birth weight, and low ponderal index mediates the association between preeclampsia, placenta previa, and neonatal mortality. Iranian Journal of Public Health, 49(4), 654.
Leslie, M. S., & Briggs, L. A. (2016). Preeclampsia and the risk of future vascular disease and mortality: A review. Journal of Midwifery & Women’s Health, 61(3), 315–324.
Yu, Y., Zhang, S., Wang, G., Hong, X., Mallow, E. B., Walker, S. O., et al. (2013). The combined association of psychosocial stress and chronic hypertension with preeclampsia. American Journal of Obstetrics and Gynecology, 209(5), e431–e438.
Akbari, S., Shahsavar, F., Khodadadi, B., Ahmadi, S. A. Y., Abbaszadeh, S., & Alavi, S. E. R. (2019). Association of FOXP3 gene polymorphisms with risk of preeclampsia in Lur population of Iran. Immunopathologia Persa, 6(1), e03–e03.
De Ocampo, M. P., Araneta, M. R. G., Macera, C. A., Alcaraz, J. E., Moore, T. R., & Chambers, C. D. (2018). Folic acid supplement use and the risk of gestational hypertension and preeclampsia. Women and Birth, 31(2), e77–e83.
Breetveld, N., Ghossein-Doha, C., Van Kuijk, S., Van Dijk, A., Van der Vlugt, M., Heidema, W., et al. (2015). Cardiovascular disease risk is only elevated in hypertensive, formerly preeclamptic women. BJOG: An International Journal of Obstetrics & Gynaecology, 122(8), 1092–1100.
Veerbeek, J. H., Hermes, W., Breimer, A. Y., Van Rijn, B. B., Koenen, S. V., Mol, B. W., et al. (2015). Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension, 65(3), 600–606.
Song, W., Wang, H., & Wu, Q. (2015). Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene, 569(1), 1–6.
Nikdoust, F., Pazoki, M., Mohammadtaghizadeh, M., Aghaali, M. K., & Amrovani, M. (2021). Exosomes: Potential player in endothelial dysfunction in cardiovascular disease. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-021-09700-y
Theilig, F., & Wu, Q. (2015). ANP-induced signaling cascade and its implications in renal pathophysiology. American Journal of Physiology-Renal Physiology, 308(10), F1047–F1055.
Zhao, Y. D., Cai, L., Mirza, M. K., Huang, X., Geenen, D. L., Hofmann, F., et al. (2012). Protein kinase GI deficiency induces pulmonary hypertension through Rho A/Rho kinase activation. The American Journal of Pathology, 180(6), 2268–2275.
Hajsadeghi, S., Pazoki, M., Meimand, S. E., Pouresmaeeli, M., & Zeraatian, S. (2021). More is better, not always true: Misdiagnosis tamponade in postoperative patient due to thick hemostatic tissue. Echocardiography, 38(6), 1074–1076.
Lee, M.-Y., Tsai, K.-B., Hsu, J.-H., Shin, S.-J., Wu, J.-R., & Yeh, J.-L. (2016). Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways. Scientific Reports, 6(1), 1–12.
Zhou, Y., & Wu, Q. (2013). Role of corin and atrial natriuretic peptide in preeclampsia. Placenta, 34(2), 89–94.
Li, Y., Xia, J., Jiang, N., Xian, Y., Ju, H., Wei, Y., & Zhang, X. (2018). Corin protects H2O2-induced apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes. Biomedicine & Pharmacotherapy, 97, 594–599.
Bouley, R. (2012). Corin: A key protein of an adaptive renal mechanism to respond to salt variation? Kidney International, 82(1), 7–8.
Tsujimoto, Y. (1998). Role of Bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria? Genes to Cells, 3(11), 697–707.
Burnett, J., Jr., Granger, J., & Opgenorth, T. (1984). Effects of synthetic atrial natriuretic factor on renal function and renin release. American Journal of Physiology-Renal Physiology, 247(5), F863–F866.
Sanogo, S., Konan, S. D., Yao, K. H., Diopoh, S. P., Aka, J., & Niava, R. (2018). Preeclampsia without hypertension occurring at 17 weeks of amenorrhea; a case report and review of literature. Journal of Nephropharmacology, 7(2), 169–173.
Díez, J. (2017). Chronic heart failure as a state of reduced effectiveness of the natriuretic peptide system: Implications for therapy. European Journal of Heart Failure, 19(2), 167–176.
Malek, M., & Nematbakhsh, M. (2015). Renal ischemia/reperfusion injury; from pathophysiology to treatment. Journal of Renal Injury Prevention, 4(2), 20.
Malik, K. U., Jennings, B. L., Yaghini, F. A., Sahan-Firat, S., Song, C. Y., Estes, A. M., & Fang, X. R. (2012). Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: A novel target for antihypertensive agents. Prostaglandins & Other Lipid Mediators, 98(3–4), 69–74.
Roohaninasab, M., Sadeghzadeh-Bazargan, A., & Goodarzi, A. (2021). Effects of laser therapy on periorbital hyperpigmentation: A systematic review on current studies. Lasers in Medical Science, 36(9), 1781–1789.
Veith, C., Schermuly, R. T., Brandes, R. P., & Weissmann, N. (2016). Molecular mechanisms of hypoxia-inducible factor-induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension. The Journal of Physiology, 594(5), 1167–1177.
Hajsadeghi, S., Pazoki, M., Pakbaz, M., Zeraatian, S., & Zaeim, M. A. (2020). Aortic valve cusp aneurysm as a result of blood culture-negative infective endocarditis, interesting echocardiographic and surgical images. Echocardiography, 37(3), 469–471.
Zhang, Y. H. (2016). Neuronal nitric oxide synthase in hypertension–an update. Clinical Hypertension, 22(1), 1–7.
Bernardi, F. C., Felisberto, F., Vuolo, F., Petronilho, F., Souza, D. R., Luciano, T. F., et al. (2012). Oxidative damage, inflammation, and Toll-like receptor 4 pathway are increased in preeclamptic patients: A case-control study. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2012/636419
Lisowska, M., Pietrucha, T., & Sakowicz, A. (2018). Preeclampsia and related cardiovascular risk: Common genetic background. Current Hypertension Reports, 20(8), 1–8.
Pandey, K. N. (2018). Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiological Genomics, 50(11), 913–928.
Costantino, S., Paneni, F., & Cosentino, F. (2016). Ageing, metabolism and cardiovascular disease. The Journal of Physiology, 594(8), 2061–2073.
Jurado Acosta, A., Rysä, J., Szabo, Z., Moilanen, A. M., Serpi, R., & Ruskoaho, H. (2020). Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin II-induced hypertension in rats. Basic & Clinical Pharmacology & Toxicology, 127(3), 178–195.
Kurlak, L. O., Broughton Pipkin, F., Mohaupt, M. G., & Mistry, H. D. (2019). Responses of the renin–angiotensin–aldosterone system in pregnant chronic kidney disease patients with and without superimposed pre-eclampsia. Clinical Kidney Journal, 12(6), 847–854.
Roohaninasab, M., Goodarzi, A., Ghassemi, M., Sadeghzadeh-Bazargan, A., Behrangi, E., & Najar Nobari, N. (2021). Systematic review of platelet-rich plasma in treating alopecia: Focusing on efficacy, safety, and therapeutic durability. Dermatologic Therapy, 34(2), e14768.
Yang, Y., Lv, J., Jiang, S., Ma, Z., Wang, D., Hu, W., et al. (2016). The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death & Disease, 7(5), e2234–e2234.
van den Oever, I. A., Raterman, H. G., Nurmohamed, M. T., & Simsek, S. (2010). Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators of Inflammation, 2010, 792393. https://doi.org/10.1155/2010/792393
Familtseva, A., Chaturvedi, P., Kalani, A., Jeremic, N., Metreveli, N., Kunkel, G. H., & Tyagi, S. C. (2016). Toll-like receptor 4 mutation suppresses hyperhomocysteinemia-induced hypertension. American Journal of Physiology-Cell Physiology, 311(4), C596–C606.
Jia, W., Wu, W., Yang, D., Xiao, C., Huang, M., Long, F., et al. (2018). GATA4 regulates angiogenesis and persistence of inflammation in rheumatoid arthritis. Cell Death & Disease, 9(5), 1–15.
Roy, S., & Sen, C. K. (2012). miRNA in wound inflammation and angiogenesis. Microcirculation, 19(3), 224–232.
Smeets, P. J., Teunissen, B. E., Planavila, A., de Vogel-van den Bosch, H., Willemsen, P. H., van der Vusse, G. J., & van Bilsen, M. (2008). Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARα and PPARδ∗. Journal of Biological Chemistry, 283(43), 29109–29118.
Donato, A. J., Pierce, G. L., Lesniewski, L. A., & Seals, D. R. (2009). Role of NFκB in age-related vascular endothelial dysfunction in humans. Aging, 1(8), 678.
Khademi, M., Roohaninasab, M., Goodarzi, A., Seirafianpour, F., Dodangeh, M., & Khademi, A. (2021). The healing effects of facial BOTOX injection on symptoms of depression alongside its effects on beauty preservation. Journal of Cosmetic Dermatology, 20(5), 1411–1415.
Trott, D. W., & Fadel, P. J. (2019). Inflammation as a mediator of arterial ageing. Experimental Physiology, 104(10), 1455–1471.
Moghimi, M., Behroozi, M. K., Maghbooli, M., Jafari, S., Mazloomzadeh, S., & Pezeshgi, A. (2017). Association between abnormal serum free light chains ratio and known prognostic factors in lymphoma; a nephrology viewpoint. Journal of Renal Injury Prevention, 6(2), 148.
Harvey, A., Montezano, A. C., Lopes, R. A., Rios, F., & Touyz, R. M. (2016). Vascular fibrosis in aging and hypertension: Molecular mechanisms and clinical implications. Canadian Journal of Cardiology, 32(5), 659–668.
Sweeney, L., & Voelkel, N. F. (2009). Estrogen exposure, obesity and thyroid disease in women with severe pulmonary hypertension. European Journal of Medical Research, 14(10), 433–442.
Iyengar, N. M., Hudis, C. A., & Dannenberg, A. J. (2013). Obesity and inflammation: New insights into breast cancer development and progression. American Society of Clinical Oncology Educational Book, 33(1), 46–51.
Lin, Y.-Y., Cheng, Y.-J., Hu, J., Chu, L.-X., Shyu, W.-C., Kao, C.-L., et al. (2016). The coexistence of hypertension and ovariectomy additively increases cardiac apoptosis. International Journal of Molecular Sciences, 17(12), 2036.
Ocaranza, M. P., Riquelme, J. A., García, L., Jalil, J. E., Chiong, M., Santos, R. A., & Lavandero, S. (2020). Counter-regulatory renin–angiotensin system in cardiovascular disease. Nature Reviews Cardiology, 17(2), 116–129.
Wang, C., Zhou, X., Liu, H., & Huang, S. (2020). Three polymorphisms of renin-angiotensin system and preeclampsia risk. Journal of Assisted Reproduction and Genetics, 37(12), 3121–3142.
Li, X., Tan, H., Zhou, S., Hu, S., Zhang, T., Li, Y., et al. (2016). Renin–angiotensin–aldosterone system gene polymorphisms in gestational hypertension and preeclampsia: A case–control gene-association study. Scientific Reports, 6(1), 1–8.
Yamaleyeva, L. M., Brosnihan, K. B., Elsangeedy, E., McGee, C., Shi, S., Caudell, D., et al. (2019). Systemic outcomes of (Pyr 1)-apelin-13 infusion at mid-late pregnancy in a rat model with preeclamptic features. Scientific Reports, 9(1), 1–11.
Touyz, R. M., Herrmann, S. M., & Herrmann, J. (2018). Vascular toxicities with VEGF inhibitor therapies–focus on hypertension and arterial thrombotic events. Journal of the American Society of Hypertension, 12(6), 409–425.
Dominguez, J. E., Habib, A. S., & Krystal, A. D. (2018). A review of the associations between obstructive sleep apnea and hypertensive disorders of pregnancy and possible mechanisms of disease. Sleep Medicine Reviews, 42, 37–46.
Bakrania, B., Duncan, J., Warrington, J. P., & Granger, J. P. (2017). The endothelin type A receptor as a potential therapeutic target in preeclampsia. International Journal of Molecular Sciences, 18(3), 522.
Granger, J. P., Spradley, F. T., & Bakrania, B. A. (2018). The endothelin system: A critical player in the pathophysiology of preeclampsia. Current Hypertension Reports, 20(4), 1–8.
Etelvino, G. M., Peluso, A. A. B., & Santos, R. A. S. (2014). New components of the renin-angiotensin system: Alamandine and the MAS-related G protein-coupled receptor D. Current Hypertension Reports, 16(6), 433.
Santos, R. A. S., Sampaio, W. O., Alzamora, A. C., Motta-Santos, D., Alenina, N., Bader, M., & Campagnole-Santos, M. J. (2017). The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiological Reviews. https://doi.org/10.1152/physrev.00023.2016
Iwai, M., & Horiuchi, M. (2009). Devil and angel in the renin–angiotensin system: ACE–angiotensin II–AT 1 receptor axis vs. ACE2–angiotensin-(1–7)–Mas receptor axis. Hypertension Research, 32(7), 533–536.
Zadeh, F. J., Mohammadtaghizadeh, M., Bahadori, H., Saki, N., & Rezaeeyan, H. (2020). The role of exogenous Fibrinogen in cardiac surgery: Stop bleeding or induce cardiovascular disease. Molecular Biology Reports, 47(10), 8189–8198. https://doi.org/10.1007/s11033-020-05880-y
Cheng, W. H., Lu, P. J., Hsiao, M., Hsiao, C. H., Ho, W. Y., Cheng, P. W., et al. (2012). Renin activates PI3K-Akt-eNOS signalling through the angiotensin AT1 and Mas receptors to modulate central blood pressure control in the nucleus tractus solitarii. British Journal of Pharmacology, 166(7), 2024–2035.
Zadeh, F. J., Ghasemi, Y., Bagheri, S., Maleknia, M., Davari, N., & Rezaeeyan, H. (2020). Do exosomes play role in cardiovascular disease development in hematological malignancy? Molecular Biology Reports, 47(7), 5487–5493.
Shatanawi, A., Lemtalsi, T., Yao, L., Patel, C., Caldwell, R. B., & Caldwell, R. W. (2015). Angiotensin II limits NO production by upregulating arginase through a p38 MAPK–ATF-2 pathway. European Journal of Pharmacology, 746, 106–114.
Zhang, Y., Wang, Y., Yang, K., Tian, L., Fu, X., Wang, Y., et al. (2014). BMP4 increases the expression of TRPC and basal [Ca2+] i via the p38MAPK and ERK1/2 pathways independent of BMPRII in PASMCs. PLoS ONE, 9(12), e112695.
Félétou, M., Huang, Y., & Vanhoutte, P. M. (2011). Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. British Journal of Pharmacology, 164(3), 894–912.
Roger, I., Milara, J., Montero, P., & Cortijo, J. (2021). The role of JAK/STAT molecular pathway in vascular remodeling associated with pulmonary hypertension. International Journal of Molecular Sciences, 22(9), 4980.
Xu, W., Liu, P., & Mu, Y.-P. (2018). Research progress on signaling pathways in cirrhotic portal hypertension. World Journal of Clinical Cases, 6(10), 335.
Bijli, K. M., Kang, B.-Y., Sutliff, R. L., & Hart, C. M. (2016). Proline-rich tyrosine kinase 2 downregulates peroxisome proliferator–activated receptor gamma to promote hypoxia-induced pulmonary artery smooth muscle cell proliferation. Pulmonary Circulation, 6(2), 202–210.
Cuadra, A. E., Shan, Z., Sumners, C., & Raizada, M. K. (2010). A current view of brain renin–angiotensin system: Is the (pro) renin receptor the missing link? Pharmacology & Therapeutics, 125(1), 27–38.
South, A. M., Shaltout, H. A., Nixon, P. A., Diz, D. I., Jensen, E. T., O’Shea, T. M., et al. (2020). Association of circulating uric acid and angiotensin-(1–7) in relation to higher blood pressure in adolescents and the influence of preterm birth. Journal of Human Hypertension, 34(12), 818–825.
Abdollahpour, A., Doustmohammadi, H., Sadeghi, L., & Zoroufchi, B. H. (2018). Acute renal failure during the pregnancy: A review on pathophysiology, risk factors and management. Journal of Renal Injury Prevention, 7(4), 314–320.
Bao, W., Behm, D. J., Nerurkar, S. S., Ao, Z., Bentley, R., Mirabile, R. C., et al. (2007). Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production. Journal of Cardiovascular Pharmacology, 49(6), 362–368.
Sriramula, S., Xia, H., Xu, P., & Lazartigues, E. (2015). Brain-targeted ACE2 overexpression attenuates neurogenic hypertension by inhibiting COX mediated inflammation. Hypertension, 65(3), 577.
Ebrahimian, T., Li, M. W., Lemarié, C. A., Simeone, S. M., Pagano, P. J., Gaestel, M., et al. (2011). Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: Regulation of oxidative stress. Hypertension, 57(2), 245–254. https://doi.org/10.1161/hypertensionaha.110.159889
Patil, P., Bhandary, S. K., Haridas, V., Sarathkumar, E., & Shetty, P. (2021). Is butyrate a natural alternative to dexamethasone in the management of CoVID-19? F1000Research, 10, 273.
Kashanian, M., Eshraghi, N., Sheikhansari, N., & Eshraghi, N. (2021). Comparing the efficacy of dilapan with extra-amniotic saline infusion and oral misoprostol for cervical ripening in term pregnancies. The Journal of Maternal-Fetal & Neonatal Medicine. https://doi.org/10.1080/14767058.2021.1888912
Dikalov, S. I., & Dikalova, A. E. (2016). Contribution of mitochondrial oxidative stress to hypertension. Current Opinion in Nephrology and Hypertension, 25(2), 73.
Eshraghi, N., Kashanian, M., Eshraghi, N., Sarchami, N., & Nafisi, N. (2021). A pregnant woman with uncommon symptoms and complications of covid19: Case report. The Iranian Journal of Obstetrics, Gynecology and Infertility, 23(11), 106–111.
Guan, A.-L., He, T., Shao, Y.-B., Chi, Y.-F., Dai, H.-Y., Wang, Y., et al. (2017). Role of Jagged1-Hey1 signal in angiotensin II-induced impairment of myocardial angiogenesis. Chinese Medical Journal, 130(3), 328.
Chen, L. Y., Wang, X., Qu, X. L., Pan, L. N., Wang, Z. Y., Lu, Y. H., & Hu, H. Y. (2019). Activation of the STAT3/microRNA-21 pathway participates in angiotensin II-induced angiogenesis. Journal of Cellular Physiology, 234(11), 19640–19654. https://doi.org/10.1002/jcp.28564
Catarata, M. J., Ribeiro, R., Oliveira, M. J., Robalo Cordeiro, C., & Medeiros, R. (2020). Renin-angiotensin system in lung tumor and microenvironment interactions. Cancers, 12(6), 1457.
Abdolalian, M., Ebrahimi, M., Aghamirzadeh, M., Eshraghi, N., Moghaddasi, M., & Eslamnik, P. (2021). The role of leukemia inhibitory factor in pathogenesis of pre-eclampsia: Molecular and cell signaling approach. Journal of Molecular Histology, 52(4), 635–642.
Wang, Y., Yang, C., Gu, Q., Sims, M., Gu, W., Pfeffer, L. M., & Yue, J. (2015). KLF4 promotes angiogenesis by activating VEGF signaling in human retinal microvascular endothelial cells. PLoS ONE, 10(6), e0130341.
Cho, S.-G., Yi, Z., Pang, X., Yi, T., Wang, Y., Luo, J., et al. (2009). Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Research, 69(17), 7062–7070.
Ding, Y.-H., Ma, Y., Qian, L.-Y., Xu, Q., Wang, L.-H., Huang, D.-S., & Zou, H. (2017). Linking atrial fibrillation with non-alcoholic fatty liver disease: Potential common therapeutic targets. Oncotarget, 8(36), 60673.
Haghbin, H., Gangwani, M. K., Ravi, S. J. K., Perisetti, A., Aziz, M., Goyal, H., et al. (2020). Nonalcoholic fatty liver disease and atrial fibrillation: Possible pathophysiological links and therapeutic interventions. Annals of Gastroenterology, 33(6), 603.
Bayat, A., Amiri-Farahani, L., Soleimani, M., Eshraghi, N., & Haghani, S. (2021). Effect of short-term psychological intervention on anxiety of pregnant women with positive screening results for chromosomal disorders: A randomized controlled trial. BMC Pregnancy and Childbirth, 21(1), 1–11.
Kashanian, M., Kouhpayehzadeh Esfahani, J., Eshraghi, N., & Jabbarpour Azari, N. (2021). Effect of magnesium sulfate on blood coagulation status in pregnant women with preeclampsia. The Iranian Journal of Obstetrics, Gynecology and Infertility, 23(12), 1–5.
Moncada, S. (1994). Nitric oxide. Journal of Hypertension. Supplement: Official Journal of the International Society of Hypertension, 12(10), S35–S39.
López-Jaramillo, P., Arenas, W. D., García, R. G., Rincon, M. Y., & López, M. (2008). The role of the L-arginine-nitric oxide pathway in preeclampsia. Therapeutic Advances in Cardiovascular Disease, 2(4), 261–275. https://doi.org/10.1177/1753944708092277
Hisamoto, K., Ohmichi, M., Kurachi, H., Hayakawa, J., Kanda, Y., Nishio, Y., et al. (2001). Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. Journal of Biological Chemistry, 276(5), 3459–3467.
Yao, S., Su, C., Wu, S. H., Hu, D. J., & Liu, X. (2020). Aliskiren improved the endothelial repair capacity of endothelial progenitor cells from patients with hypertension via the Tie2/PI3k/Akt/eNOS signalling pathway. Cardiology Research and Practice, 2020, 6534512. https://doi.org/10.1155/2020/6534512
Xu, B.-C., Long, H.-B., & Luo, K.-Q. (2016). RETRACTED ARTICLE: Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway. Scientific Reports, 6(1), 1–11.
Guo, X., Razandi, M., Pedram, A., Kassab, G., & Levin, E. R. (2005). Estrogen induces vascular wall dilation: Mediation through kinase signaling to nitric oxide and estrogen receptors α and β. Journal of Biological Chemistry, 280(20), 19704–19710.
Xue, B., Johnson, A. K., & Hay, M. (2013). Sex differences in angiotensin II-and aldosterone-induced hypertension: The central protective effects of estrogen. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 305(5), R459–R463.
Huetsch, J. C., Suresh, K., Bernier, M., & Shimoda, L. A. (2016). Update on novel targets and potential treatment avenues in pulmonary hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 311(5), L811–L831.
Dusse, L. M., Alpoim, P. N., Lwaleed, B. A., de Sousa, L. P., das Graças Carvalho, M., & Gomes, K. B. (2013). Is there a link between endothelial dysfunction, coagulation activation and nitric oxide synthesis in preeclampsia? Clinica Chimica Acta, 415, 226–229.
Pimentel, A. M., Pereira, N. R., Costa, C. A., Mann, G. E., Cordeiro, V. S., de Moura, R. S., et al. (2013). L-arginine-nitric oxide pathway and oxidative stress in plasma and platelets of patients with pre-eclampsia. Hypertension Research, 36(9), 783–788.
Matsubara, K., Higaki, T., Matsubara, Y., & Nawa, A. (2015). Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. International Journal of Molecular Sciences, 16(3), 4600–4614.
Guerby, P., Swiader, A., Augé, N., Parant, O., Vayssière, C., Uchida, K., et al. (2019). High glutathionylation of placental endothelial nitric oxide synthase in preeclampsia. Redox Biology, 22, 101126. https://doi.org/10.1016/j.redox.2019.101126
Osol, G., Ko, N. L., & Mandalà, M. (2017). Altered endothelial nitric oxide signaling as a paradigm for maternal vascular maladaptation in preeclampsia. Current Hypertension Reports, 19(10), 1–12.
Willeit, P., Freitag, D. F., Laukkanen, J. A., Chowdhury, S., Gobin, R., Mayr, M., et al. (2015). Asymmetric dimethylarginine and cardiovascular risk: systematic review and meta-analysis of 22 prospective studies. Journal of the American Heart Association, 4(6), e001833.
Duni, A., Liakopoulos, V., Rapsomanikis, K.-P., & Dounousi, E. (2017). Chronic kidney disease and disproportionally increased cardiovascular damage: Does oxidative stress explain the burden? Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2017/9036450
Ellulu, M. S., Patimah, I., Khaza’ai, H., Rahmat, A., Abed, Y., & Ali, F. (2016). Atherosclerotic cardiovascular disease: A review of initiators and protective factors. Inflammopharmacology, 24(1), 1–10.
Norton, C. E., Sheak, J. R., Yan, S., Weise-Cross, L., Jernigan, N. L., Walker, B. R., & Resta, T. C. (2020). Augmented pulmonary vasoconstrictor reactivity after chronic hypoxia requires Src kinase and epidermal growth factor receptor signaling. American Journal of Respiratory Cell and Molecular Biology, 62(1), 61–73.
Gao, L., Yin, H., Smith, R. S., Chao, L., & Chao, J. (2008). Role of kallistatin in prevention of cardiac remodeling after chronic myocardial infarction. Laboratory Investigation, 88(11), 1157–1166.
Chao, J., Guo, Y., Li, P., & Chao, L. (2017). Opposing effects of oxygen regulation on kallistatin expression: Kallistatin as a novel mediator of oxygen-induced HIF-1-eNOS-NO pathway. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2017/5262958
Luizon, M. R., Pereira, D. A., & Sandrim, V. C. (2018). Pharmacogenomics of hypertension and preeclampsia: Focus on gene–gene interactions. Frontiers in Pharmacology, 9, 168.
Shi, Y., Lüscher, T. F., & Camici, G. G. (2014). Dual role of endothelial nitric oxide synthase in oxidized LDL-induced, p66Shc-mediated oxidative stress in cultured human endothelial cells. PLoS ONE, 9(9), e107787.
Olagnier, D., Peri, S., Steel, C., van Montfoort, N., Chiang, C., Beljanski, V., et al. (2014). Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathogens, 10(12), e1004566.
Wang, H., & Su, Y. (2011). Collagen IV contributes to nitric oxide-induced angiogenesis of lung endothelial cells. American Journal of Physiology-Cell Physiology, 300(5), C979–C988.
Colwell, N., Larion, M., Giles, A. J., Seldomridge, A. N., Sizdahkhani, S., Gilbert, M. R., & Park, D. M. (2017). Hypoxia in the glioblastoma microenvironment: Shaping the phenotype of cancer stem-like cells. Neuro-Oncology, 19(7), 887–896.
Popescu, A. M., Purcaru, S. O., Alexandru, O., & Dricu, A. (2016). New perspectives in glioblastoma antiangiogenic therapy. Contemporary Oncology, 20(2), 109.
Kim, S. F. (2011). The role of nitric oxide in prostaglandin biology; update. Nitric Oxide, 25(3), 255–264.
Corti, F., Finetti, F., Ziche, M., & Simons, M. (2013). The syndecan-4/protein kinase Cα pathway mediates prostaglandin E2-induced extracellular regulated kinase (ERK) activation in endothelial cells and angiogenesis in vivo. Journal of Biological Chemistry, 288(18), 12712–12721.
Blaylock, R. L. (2019). Viruses and tumor cell microenvironment: A brief summary. Surgical Neurology International, 10, 160.
Resanovic, I., Gluvic, Z., Zaric, B., Sudar-Milovanovic, E., Jovanovic, A., Milacic, D., et al. (2019). Early effects of hyperbaric oxygen on inducible nitric oxide synthase activity/expression in lymphocytes of type 1 diabetes patients: A prospective pilot study. International Journal of Endocrinology. https://doi.org/10.1155/2019/2328505
Zhou, Y., Zhao, L., Zhang, Z., & Lu, X. (2015). Protective effect of enalapril against methionine-enriched diet-induced hypertension: Role of endoplasmic reticulum and oxidative stress. BioMed Research International. https://doi.org/10.1155/2015/724876
Zhao, Y., Wang, C., Wang, C., Hong, X., Miao, J., Liao, Y., et al. (2018). An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Scientific Reports, 8(1), 1–14.
Cardoso, V. G., Gonçalves, G. L., Costa-Pessoa, J. M., Thieme, K., Lins, B. B., Casare, F. A. M., et al. (2018). Angiotensin II-induced podocyte apoptosis is mediated by endoplasmic reticulum stress/PKC-δ/p38 MAPK pathway activation and trough increased Na+/H+ exchanger isoform 1 activity. BMC Nephrology, 19(1), 1–12.
Giles, T. D., Cockcroft, J. R., Pitt, B., Jakate, A., & Wright, H. M. (2017). Rationale for nebivolol/valsartan combination for hypertension: Review of preclinical and clinical data. Journal of Hypertension, 35(9), 1758.
Tzemos, N., Lim, P. O., & MacDonald, T. M. (2009). Valsartan improves endothelial dysfunction in hypertension: A randomized, double-blind study. Cardiovascular Therapeutics, 27(3), 151–158.
Alvin, Z., Laurence, G. G., Coleman, B. R., Zhao, A., Hajj-Moussa, M., & Haddad, G. E. (2011). Regulation of L-type inward calcium channel activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts. Canadian Journal of Physiology and Pharmacology, 89(3), 206–215.
Al Disi, S. S., Anwar, M. A., & Eid, A. H. (2016). Anti-hypertensive herbs and their mechanisms of action: Part I. Frontiers in Pharmacology, 6, 323.
Agbor, L. N., Wiest, E. F., Rothe, M., Schunck, W.-H., & Walker, M. K. (2014). Role of CYP1A1 in modulating the vascular and blood pressure benefits of omega-3 polyunsaturated fatty acids. Journal of Pharmacology and Experimental Therapeutics, 351(3), 688–698.
Levy, A. S., Chung, J. C., Kroetsch, J. T., & Rush, J. W. (2009). Nitric oxide and coronary vascular endothelium adaptations in hypertension. Vascular Health and Risk Management, 5, 1075.
Kang, Y.-M., Ma, Y., Zheng, J.-P., Elks, C., Sriramula, S., Yang, Z.-M., & Francis, J. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82(3), 503–512.
Hernandez, H., Roberts, A. L., & McDowell, C. M. (2020). Nuclear factor-kappa beta signaling is required for transforming growth factor Beta-2 induced ocular hypertension. Experimental Eye Research, 191, 107920. https://doi.org/10.1016/j.exer.2020.107920
Zou, X., Wang, J., Chen, C., Tan, X., Huang, Y., Jose, P. A., et al. (2020). Secreted monocyte miR-27a, via mesenteric arterial mas receptor-eNOS pathway, causes hypertension. American Journal of Hypertension, 33(1), 31–42.
Kim, S., Lee, K.-S., Choi, S., Kim, J., Lee, D.-K., Park, M., et al. (2018). NF-κB–responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase. Journal of Biological Chemistry, 293(49), 18989–19000.
Nemecz, M., Alexandru, N., Tanko, G., & Georgescu, A. (2016). Role of microRNA in endothelial dysfunction and hypertension. Current Hypertension Reports, 18(12), 1–21.
Vandenwijngaert, S., Ledsky, C. D., Agha, O., Wu, C., Hu, D., Bagchi, A., et al. (2018). MicroRNA-425 and microRNA-155 cooperatively regulate atrial natriuretic peptide expression and cGMP production. PLoS ONE, 13(4), e0196697.
Kotlo, K. U., Hesabi, B., & Danziger, R. S. (2011). Implication of microRNAs in atrial natriuretic peptide and nitric oxide signaling in vascular smooth muscle cells. American Journal of Physiology. Cell Physiology, 301(4), C929–C937. https://doi.org/10.1152/ajpcell.00088.2011
Zhao, H., & Group, D. K. N. P. S. (2019). The functional relevance between MicroRNA-128 and atrial natriuretic peptides in smooth muscle cells regulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(1), A322–A322.
Gabani, M., Liu, J., Ait-Aissa, K., Koval, O., Kim, Y.-R., Castañeda, D., et al. (2019). MiR-204 regulates type 1 IP3R to control vascular smooth muscle cell contractility and blood pressure. Cell Calcium, 80, 18–24.
Lu, Q., Ma, Z., Ding, Y., Bedarida, T., Chen, L., Xie, Z., et al. (2019). Circulating miR-103a-3p contributes to angiotensin II-induced renal inflammation and fibrosis via a SNRK/NF-κB/p65 regulatory axis. Nature Communications, 10(1), 1–14.
Ren, X.-S., Tong, Y., Qiu, Y., Ye, C., Wu, N., Xiong, X.-Q., et al. (2020). MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. Journal of Extracellular Vesicles, 9(1), 1698795.
Song, J.-J., Yang, M., Liu, Y., Song, J.-W., Wang, J., Chi, H.-J., et al. (2020). MicroRNA-122 aggravates angiotensin II-mediated apoptosis and autophagy imbalance in rat aortic adventitial fibroblasts via the modulation of SIRT6-elabela-ACE2 signaling. European Journal of Pharmacology, 883, 173374.