Hyperspectral image restoration using framelet-regularized low-rank nonnegative matrix factorization
Tài liệu tham khảo
Lewis, 2011, Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA, Int. J. Wildland Fire, 20, 255, 10.1071/WF09081
Tiwari, 2011, An assessment of independent component analysis for detection of military targets from hyperspectral images, Int. J. Appl. Earth Observ. Geoinf., 13, 730, 10.1016/j.jag.2011.03.007
Xia, 2018, Random forest ensembles and extended multiextinction profiles for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 56, 202, 10.1109/TGRS.2017.2744662
Iordache, 2012, Total variation spatial regularization for sparse hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., 50, 4484, 10.1109/TGRS.2012.2191590
Tarabalka, 2010, Segmentation and classification of hyperspectral images using watershed transformation, Pattern Recognit., 43, 2367, 10.1016/j.patcog.2010.01.016
Yokoya, 2015, Object detection based on sparse representation and hough voting for optical remote sensing imagery, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 8, 2053, 10.1109/JSTARS.2015.2404578
Elad, 2006, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15, 3736, 10.1109/TIP.2006.881969
Dabov, 2007, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16, 2080, 10.1109/TIP.2007.901238
Green, 1988, A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Trans. Geosci. Remote Sens., 26, 65, 10.1109/36.3001
Othman, 2006, Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage, IEEE Trans. Geosci. Remote Sens., 44, 397, 10.1109/TGRS.2005.860982
Chen, 2008, Simultaneous dimensionality reduction and denoising of hyperspectral imagery using bivariate wavelet shrinking and principal component analysis, Can. J. Remote Sens., 34, 447, 10.5589/m08-058
Ye, 2015, Multitask sparse nonnegative matrix factorization for joint spectral-spatial hyperspectral imagery denoising, IEEE Trans. Geosci. Remote Sens., 53, 2621, 10.1109/TGRS.2014.2363101
Zhao, 2015, Hyperspectral image denoising via sparse representation and low-rank constraint, IEEE Trans. Geosci. Remote Sens., 53, 296, 10.1109/TGRS.2014.2321557
Yang, 2016, Coupled sparse denoising and unmixing with low-rank constraint for hyperspectral image, IEEE Trans. Geosci. Remote Sens., 54, 1818, 10.1109/TGRS.2015.2489218
Chen, 2011, Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage, IEEE Trans. Geosci. Remote Sens., 49, 973, 10.1109/TGRS.2010.2075937
Maggioni, 2013, Nonlocal transform-domain filter for volumetric data denoising and reconstruction, IEEE Trans. Image Process., 22, 119, 10.1109/TIP.2012.2210725
Karami, 2011, Noise reduction of hyperspectral images using kernel non-negative tucker decomposition, IEEE J. Sel. Top. Signal Process., 5, 487, 10.1109/JSTSP.2011.2132692
Guo, 2013, Hyperspectral image noise reduction based on rank-1 tensor decomposition, J. Photogramm. Remote Sens., 83, 50, 10.1016/j.isprsjprs.2013.06.001
Zhang, 2014, Hyperspectral image restoration using low-rank matrix recovery, IEEE Trans. Geosci. Remote Sens., 52, 4729, 10.1109/TGRS.2013.2284280
He, 2016, Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration, IEEE Trans. Geosci. Remote Sens., 54, 178, 10.1109/TGRS.2015.2452812
Xie, 2016, Hyperspectral image restoration via iteratively regularized weighted schatten p-norm minimization, IEEE Trans. Geosci. Remote Sens., 54, 4642, 10.1109/TGRS.2016.2547879
Chen, 2017, Denoising of hyperspectral images using nonconvex low rank matrix approximation, IEEE Trans. Geosci. Remote Sens., 55, 5366, 10.1109/TGRS.2017.2706326
Wu, 2017, Structure tensor total variation-regularized weighted nuclear norm minimization for hyperspectral image mixed denoising, Signal Process., 131, 202, 10.1016/j.sigpro.2016.07.031
Chen, 2018, Denoising hyperspectral image with non-i.i.d. noise structure, IEEE Trans. Cybern., 48, 1054, 10.1109/TCYB.2017.2677944
Aggarwal, 2016, Hyperspectral image denoising using spatio-spectral total variation, IEEE Geosci. Remote Sens. Lett., 13, 442
Li, 2015, Hyperspectral image denoising using the robust low-rank tensor recovery, J. Opt. Soc. Am. A Opt. Image Sci. Vis., 32, 1604, 10.1364/JOSAA.32.001604
Fan, 2017, Hyperspectral image restoration using low-rank tensor recovery, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 10, 4589, 10.1109/JSTARS.2017.2714338
Wang, 2018, Hyperspectral image restoration via total variation regularized low-rank tensor decomposition, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 11, 1227, 10.1109/JSTARS.2017.2779539
Zhao, 2013, Total variation structured total least squares method for image restoration, SIAM J. Sci. Comput., 35, B1304, 10.1137/130915406
Chen, 2017, Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint, Remote Sens., 9, 559, 10.3390/rs9060559
Zhao, 2014, A new convex optimization model for multiplicative noise and blur removal, Siam J. Imaging Sci., 7, 456, 10.1137/13092472X
Mei, 2018, Cauchy noise removal by nonconvex admm with convergence guarantees, J. Sci. Comput., 74, 1, 10.1007/s10915-017-0460-5
Liu, 2017, High-order total variation-based poissonian image deconvolution with spatially adapted regularization parameter, Appl. Math. Model., 45, 516, 10.1016/j.apm.2017.01.009
Simões, 2015, A convex formulation for hyperspectral image superresolution via subspace-based regularization, IEEE Trans. Geosci. Remote Sens., 53, 3373, 10.1109/TGRS.2014.2375320
Zhuang, 2016, Fast hyperspectral image denoising based on low rank and sparse representations, 1847
Bioucas-Dias, 2012, Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 5, 354, 10.1109/JSTARS.2012.2194696
Ji, 2010, Robust video denoising using low rank matrix completion, 1791
Zhou, 2011, Godec: randomized low-rank and sparse matrix decomposition in noisy case, 1
Wang, 2018, Low rank constraint and spatial spectral total variation for hyperspectral image mixed denoising, Signal Process., 142, 11, 10.1016/j.sigpro.2017.06.012
Sun, 2017, A novel weighted cross total variation method for hyperspectral image mixed denoising, IEEE Access, 5, 27172, 10.1109/ACCESS.2017.2768580
Wen, 2012, Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm, Math. Prog. Comp., 4, 333, 10.1007/s12532-012-0044-1
Xu, 2015, Parallel matrix factorization for low-rank tensor completion, Inverse Pro. Imaging, 9, 601, 10.3934/ipi.2015.9.601
Ji, 2016, Tensor completion using total variation and low-rank matrix factorization, Inf. Sci., 326, 243, 10.1016/j.ins.2015.07.049
He, 2017, Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., 55, 1
Zhang, 2016, Framelet-based sparse unmixing of hyperspectral images, IEEE Trans. Image Process., 25, 1516, 10.1109/TIP.2016.2523345
Cai, 2012, Framelet-based blind motion deblurring from a single image, IEEE Trans. Image Process., 21, 562, 10.1109/TIP.2011.2164413
Jiang, 2018, Matrix factorization for low-rank tensor completion using framelet prior, Inf. Sci., 436, 403, 10.1016/j.ins.2018.01.035
Chang, 2013, Robust destriping method with unidirectional total variation and framelet regularization, Opt. Expr., 21, 23307, 10.1364/OE.21.023307
Chan, 2004, Tight frame: an efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal., 17, 91, 10.1016/j.acha.2004.02.003
Razaviyayn, 2013, A unified convergence analysis of block successive minimization methods for nonsmooth optimization, SIAM J. Optim., 23, 1126, 10.1137/120891009
Chen, 2017, Group sparsity based regularization model for remote sensing image stripe noise removal, Neurocomputing, 267, 95, 10.1016/j.neucom.2017.05.018
Boyd, 2010, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 10.1561/2200000016
Deng, 2018, A directional global sparse model for single image rain removal, Appl. Math. Model., 59, 662, 10.1016/j.apm.2018.03.001
Donoho, 1995, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41, 613, 10.1109/18.382009
Wang, 2004, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 600, 10.1109/TIP.2003.819861
Zhang, 2011, FSIM: a feature similarity index for image quality assessment, IEEE Trans. Image Process., 20, 2378, 10.1109/TIP.2011.2109730
Yang, 2017, No-reference hyperspectral image quality assessment via quality-sensitive features learning, Remote Sens., 9, 305, 10.3390/rs9040305
Bioucas-Dias, 2008, Hyperspectral subspace identification, IEEE Trans. Geosci. Remote Sens., 46, 2435, 10.1109/TGRS.2008.918089